3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203
rev. December 6, 2022

Open Informatics Master's Course

How Difficult Is Stereo?

Centrum för teknikstudier at Malmö Högskola, Sweden
The Vyšehrad Fortress, Prague

- top: easy interpretation from even a single image
- bottom left: we have no help from image interpretation
- bottom right: ambiguous interpretation due to a combination of missing texture and occlusion

A Summary of Our Observations and an Outlook

1. simple matching algorithms do not work

- the success of a model-free stereo matching is unlikely $\rightarrow 153$
- without scene recognition or use high-level constraints the problem seems difficult

2. stereopsis requires image interpretation in sufficiently complex scenes or another-modality measurement

$$
\text { we have a tradeoff: model strength } \leftrightarrow \text { universality }
$$

Outlook:

1. represent the occlusion constraint: correspondences are not independent due to occlusions

- disparity in rectified images
- uniqueness as an occlusion constraint

2. represent piecewise continuity
the weakest of interpretations; piecewise: object boundaries

- ordering as a weak continuity model

3. use a consistent framework

- finding the most probable solution (MAP)

Binocular Disparity in a Standard Stereo Pair

－Assumptions：single image line，standard camera pair

$$
\begin{array}{rlrl}
b & =z \cot \alpha_{1}-z \cot \alpha_{2} & b & =\frac{b}{2}+x-z \cot \alpha_{2} \\
u_{1} & =f \cot \alpha_{1} & u_{2} & =f \cot \alpha_{2}
\end{array}
$$

－eliminate α_{1}, α_{2} and obtain：

$$
X=(x, y, z) \text { from disparity } d=u_{1}-u_{2}:
$$

$$
z=\frac{b f}{d} \quad x=\frac{b}{d} \frac{u_{1}+u_{2}}{2}, \quad y=\frac{b v}{d}
$$

（0）f, d, u, v in pixels，b, x, y, z in meters

Observations

－constant disparity surface is a frontoparallel plane
－distant points have small disparity
－relative error in z is large for small disparity

$$
\frac{1}{z} \frac{\mathrm{~d} z}{\mathrm{~d} d}=-\frac{1}{d}
$$

－increasing the baseline or the focal length increases disparity and reduces the error

Structural Ambiguity in Stereovision

- suppose we can recognize local matches independently but have no scene model
- lack of an occlusion model

$\Rightarrow \quad \begin{aligned} & \text { structural } \\ & \text { of texture) }\end{aligned}$

left image

interpretation 1

right image

interpretation 2

Understanding Basic Occlusion Types

half occlusion

mutual occlusion

- surface point at the intersection of rays l and r_{1} occludes a world point at the intersection (l, r_{3}) and implies the world point $\left(l, r_{2}\right)$ is transparent, therefore

$$
\left(l, r_{3}\right) \text { and }\left(l, r_{2}\right) \text { are excluded by }\left(l, r_{1}\right)
$$

- in half-occlusion, every 3D point such as X_{1} or X_{2} is excluded by a binocularly visible surface point sach as Y_{1}, Y_{2}, Y_{3} \Rightarrow decisions on correspondences are not independen:
- in mutual occlusion this is no longer the case: any X in the yellow zone above is not excluded
\Rightarrow decisions inside the zone are independent-on the rest

Matching Table

Based on scene opacity and the observation on mutual exclusion we expect each pixel to match at most once．

matching table T
matching table
－rows and columns represent optical rays
－nodes：possible correspondence pairs
－full nodes：matches
－numerical values associated with nodes：descriptor similarities

-Constructing An Image Similarity Cost

- let $p_{i}=(l, r)$ and $\mathbf{L}(l), \mathbf{R}(r)$ be (left, right) image descriptors (vectors) constructed from local image neighborhood windows

'block' in the left image \mapsto 'a set of random-variable samples':

- a simple block (dis-) similarity is $\operatorname{SAD}(l, r)=\|\mathbf{L}(l)-\mathbf{R}(r)\|_{1} \quad L_{1}$ metric (sum of absolute differences; smaller is better)
- a scaled-descriptor (dis-) similarity is $\operatorname{sim}(l, r)=\frac{\|\mathbf{L}(l)-\mathbf{R}(r)\|^{2}}{\sigma_{I}^{2}(l, r)}$
- σ_{I}^{2} - the difference scale; a suitable (plug-in) estimate is $\frac{1}{2}[\operatorname{var}(\mathbf{L}(l))+\operatorname{var}(\mathbf{R}(r))]$, giving

$$
\begin{equation*}
\operatorname{sim}(l, r)=1-\underbrace{\frac{2 \operatorname{cov}(\mathbf{L}(l), \mathbf{R}(r))}{\operatorname{var}(\mathbf{L}(l))+\operatorname{var}(\mathbf{R}(r))}}_{\rho(\mathbf{L}(l), \mathbf{R}(r))} \tag{36}
\end{equation*}
$$

$\operatorname{var}(\cdot), \operatorname{cov}(\cdot)$ is sample (co-)variance, not invariant to scale difference

- $\rho-$ MNCC - Moravec's Normalized Cross-Correlation similarity

$$
\rho^{2} \in[0,1], \quad \operatorname{sign} \rho \sim \text { 'phase' }
$$

- another successful (dis-)similarity is the Hamming Distance over the Census Transform

How A Scene Looks in The Filled－In Matching Table

\bigcirc MNCC ρ used $(\alpha=1.5, \beta=1)$ $\rightarrow 176$
－high－similarity structures correspond to scene objects

Things to notice：
constant disparity
－a diagonal in matching table
－zero disparity is the main diagonal
assuming standard stereopair
depth discontinuity
－horizontal or vertical jump in matching table large image window
－similarity values have better discriminability
－worse occlusion localization repeated texture
－horizontal and vertical block repetition

Image Point Descriptors And Their Similarity

Descriptors: Image points are tagged by their (viewpoint-invariant) physical properties:

- texture window
- a descriptor like DAISY
[Moravec 77]
- learned descriptors
- reflectance profile under a moving illuminant
- photometric ratios
[Wolff \& Angelopoulou 93-94]
-dual photometric stereo
[Ikeuchi 87]
- polarization signature
- ...
- similar points are more likely to match
- image similarity values for all 'match candidates' give the 3D matching table

click for video

Marroquin's Winner Take All (WTA) Matching Algorithm

Alg: Per left-image pixel: The most SAD-similar pixel along the right epipolar line

1. select disparity range
2. represent the matching table diagonals in a compact form

3. use an 'image sliding \& cost aggregation algorithm'

A Matlab Code for WTA

```
function dmap = marroquin(iml, imr, disparityRange)
% iml, imr - rectified gray-scale images
% disparityRange - non-negative disparity range
% (c) Radim Sara (sara@cmp.felk.cvut.cz) FEE CTU Prague, 10 Dec 12
thr = 20; % bad match rejection threshold
r = 2;
winsize = 2*r+[1 1]; % 5x5 window (neighborhood) for r=2
N = boxing(ones(size(iml)), winsize); % the size of each local patch is
    % N = (2r+1)^2 except for boundary pixels
% --- compute dissimilarity per pixel and disparity --->
for d = 0:disparityRange % cycle over all disparities
    slice = abs(imr(:,1:end-d) - iml(:,d+1:end)); % pixelwise dissimilarity (unscaled SAD)
    V(:,d+1:end,d+1) = boxing(slice, winsize)./N; % window aggregation
    end
% --- collect winners, threshold, output disparity map --->
```



```
end % of marroquin
function c = boxing(im, wsz)
    % if the mex is not found, run this slow version:
    c = conv2(ones(1,wsz(1)), ones(wsz(2),1), im, 'same');
end % of boxing
```


WTA: Some Results

- results are fairly bad
- false matches in textureless image regions and on repetitive structures (book shelf)
- a more restrictive threshold (thr $=10$) does not work as expected
- we searched the true disparity range, results get worse if the range is set wider
- chief failure reasons:
- unnormalized image dissimilarity does not work well
- no occlusion model (it just ignores the occlusion structure we have discussed $\rightarrow 167$)

Thank You

