# **3D Computer Vision**

Radim Šára Martin Matoušek

Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/tdv/start

http://cmp.felk.cvut.cz mailto:sara@cmp.felk.cvut.cz phone ext. 7203

rev. October 18, 2022



Open Informatics Master's Course

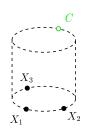
# Degenerate (Critical) Configurations for Exterior Orientation



### no solution

**1**. C cocyclic with  $(X_1, X_2, X_3)$ 

camera sees points on a line



## unstable solution

• center of projection C located on the orthogonal circular cylinder with base circumscribing the three points  $X_i$ 

<u>unstable</u>: a small change of  $X_i$  results in a large change of C

can be detected by error propagation

### degenerate

• camera C is coplanar with points  $(X_1, X_2, X_3)$  but is not on the circumscribed circle of  $(X_1, X_2, X_3)$  camera sees points on a line

• additional critical configurations depend on the quadratic equations solver

[Haralick et al. IJCV 1994]

| problem              | given                                                                                  | unknown             | slide       |
|----------------------|----------------------------------------------------------------------------------------|---------------------|-------------|
| camera resection     | 6 world-image correspondences $\left\{ (X_i, m_i)  ight\}_{i=1}^6$                     | Р                   | →62         |
| exterior orientation | K, 3 world–image correspondences $\left\{ \left( X_{i},m_{i} ight)  ight\} _{i=1}^{3}$ | <b>R</b> , <b>C</b> | →66         |
| relative orientation | 3 world-world correspondences $\left\{ \left( X_{i},Y_{i} ight)  ight\} _{i=1}^{3}$    | R, t                | → <b>70</b> |

• camera resection and exterior orientation are similar problems in a sense:

- we do resectioning when our camera is uncalibrated
- we do orientation when our camera is calibrated
- relative orientation involves no camera (see next)
- more problems to come

it is a recurring problem in 3D vision

## ► The Relative Orientation Problem

**Problem:** Given point triples  $(X_1, X_2, X_3)$  and  $(Y_1, Y_2, Y_3)$  in a general position in  $\mathbb{R}^3$  such that the correspondence  $X_i \leftrightarrow Y_i$  is known, determine the relative orientation  $(\mathbb{R}, \mathbf{t})$  that maps  $\mathbf{X}_i$  to  $\mathbf{Y}_i$ , i.e.

$$\mathbf{Y}_i = \mathbf{R}\mathbf{X}_i + \mathbf{t}, \quad i = 1, 2, 3. \quad \mathbf{\uparrow} \ \boldsymbol{\xi} ;$$

#### Applies to:

- 3D scanners
- · merging partial reconstructions from different viewpoints
- generalization of the last step of P3P

**Obs:** Let the centroid be  $\bar{\mathbf{X}} = \frac{1}{3} \sum_{i} \mathbf{X}_{i}$  and analogically for  $\bar{\mathbf{Y}}$ . Then

$$\bar{\mathbf{Y}} = \mathbf{R}\bar{\mathbf{X}} + \mathbf{t}$$

Therefore

$$\mathbf{Z}_i \stackrel{\text{def}}{=} (\mathbf{Y}_i - \bar{\mathbf{Y}}) = \mathbf{R}(\mathbf{X}_i - \bar{\mathbf{X}}) \stackrel{\text{def}}{=} \mathbf{R} \mathbf{W}_i$$

If all dot products are equal,  $\mathbf{Z}_i^{\top} \mathbf{Z}_j = \mathbf{W}_i^{\top} \mathbf{W}_j$  for i, j = 1, 2, 3, we have

$$\mathbf{R}^* = \begin{bmatrix} \mathbf{W}_1 & \mathbf{W}_2 & \mathbf{W}_3 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{Z}_1 & \mathbf{Z}_2 \end{bmatrix} \mathbf{N} \mathbf{0} \boldsymbol{\zeta} \mathbf{0}$$

### Poor man's solver:

- normalize  $\mathbf{W}_i, \mathbf{Z}_i$  to unit length, use the above formula, and then find the closest rotation matrix
- but this is equivalent to a non-optimal objective

it ignores errors in vector lengths

## An Optimal Algorithm for Relative Orientation

We setup a minimization problem

$$\mathbf{R}^{*} = \arg\min_{\mathbf{R}} \sum_{i=1}^{3} \|\mathbf{Z}_{i} - \mathbf{R}\mathbf{W}_{i}\|^{2} \quad \text{s.t.} \quad \mathbf{R}^{\top}\mathbf{R} = \mathbf{I}, \quad \det \mathbf{R} = 1$$

$$\overset{\mathbf{A}^{\top}\boldsymbol{\Delta}}{\arg\min_{\mathbf{R}} \sum_{i} \|\mathbf{Z}_{i} - \mathbf{R}\mathbf{W}_{i}\|^{2}} = \arg\min_{\mathbf{R}} \sum_{i} \left(\|\mathbf{Z}_{i}\|^{2} - 2\mathbf{Z}_{i}^{\top}\mathbf{R}\mathbf{W}_{i} + \|\mathbf{W}_{i}\|^{2}\right) = \dots = \arg\max_{\mathbf{R}} \sum_{i} \mathbf{Z}_{i}^{\top}\mathbf{R}\mathbf{W}_{i}$$

**Obs 1:** Let  $\mathbf{A} : \mathbf{B} = \sum_{i,j} a_{ij} b_{ij}$  be the dot-product (Frobenius inner product) over real matrices. Then

$$\mathbf{A} : \mathbf{B} = \mathbf{B} : \mathbf{A} = \operatorname{tr}(\mathbf{A}^{\top}\mathbf{B}) = \operatorname{vec}(\mathbf{A})^{\top}\operatorname{vec}(\mathbf{B}) = \mathbf{a} \cdot \mathbf{b} \rightleftharpoons \mathbf{a}^{\prime}\mathbf{b}$$

Obs 2: (cyclic property for matrix trace)

$$\operatorname{tr}(\mathbf{ABC}) = \operatorname{tr}(\mathbf{CAB}) \xrightarrow{\sim} \operatorname{fr}(\mathbf{BC}) \cdots$$

**Obs 3:** ( $\mathbf{Z}_i$ ,  $\mathbf{W}_i$  are vectors)

$$\mathbf{Z}_i^{\top} \mathbf{R} \mathbf{W}_i = \operatorname{tr}(\mathbf{Z}_i^{\top} \mathbf{R} \mathbf{W}_i) \stackrel{\text{O2}}{=} \operatorname{tr}(\mathbf{W}_i \mathbf{Z}_i^{\top} \mathbf{R}) \stackrel{\text{O1}}{=} (\mathbf{Z}_i \mathbf{W}_i^{\top}) : \mathbf{R} = \mathbf{R} : (\mathbf{Z}_i \mathbf{W}_i^{\top})$$

Let there be SVD of

$$\sum_{i=1}^{3} \mathbf{Z}_{i} \mathbf{W}_{i}^{\top} \stackrel{\text{def}}{=} \mathbf{M} = \mathbf{U} \mathbf{D} \mathbf{V}^{\top} = \mathcal{C} \mathbf{V} \mathcal{D} (\mathbf{H})$$

Then

$$\mathbf{R} : \mathbf{M} = \mathbf{R} : (\mathbf{U}\mathbf{D}\mathbf{V}^{\top}) \stackrel{01}{=} \operatorname{tr}(\mathbf{R}^{\top}\mathbf{U}\mathbf{D}\mathbf{V}^{\top}) \stackrel{02}{=} \operatorname{tr}(\mathbf{V}^{\top}\mathbf{R}^{\top}\mathbf{U}\mathbf{D}) \stackrel{01}{=} (\mathbf{U}^{\top}\mathbf{R}\mathbf{V}) : \mathbf{D}$$

# cont'd: The Algorithm

We are solving

$$\mathbf{R}^* = \arg \max_{\mathbf{R}} \sum_i \mathbf{Z}_i^\top \mathbf{R} \mathbf{W}_i = \arg \max_{\mathbf{R}} \left( \mathbf{U}^\top \mathbf{R} \mathbf{V} \right) : \mathbf{D}$$

### A particular solution is found as follows:

- $\mathbf{U}^{\top}\mathbf{R}\mathbf{V}$  must be (1) orthogonal, and closest to: (2) diagonal and (3) positive definite  $\mathbf{D}$
- Since U, V are orthogonal matrices then the solution to the problem is among  $\mathbf{R}^* = \mathbf{U} \mathbf{S} \mathbf{V}^{\top}$ , where S is diagonal and orthogonal, i.e. one of

 $\pm \operatorname{diag}(1,1,1), \quad \pm \operatorname{diag}(1,-1,-1), \quad \pm \operatorname{diag}(-1,1,-1), \quad \pm \operatorname{diag}(-1,-1,1)$ 

- $\mathbf{U}^{\top}\mathbf{V}$  is not necessarily positive definite
- We choose  ${\bf S}$  so that  $({\bf R}^*)^\top {\bf R}^* = {\bf I}$

## Alg:

- 1. Compute matrix  $\mathbf{M} = \sum_i \mathbf{Z}_i \mathbf{W}_i^{\top}$ .
- 2. Compute SVD  $\mathbf{M} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$ .
- 3. Compute all  $\mathbf{R}_k = \mathbf{U}\mathbf{S}_k\mathbf{V}^{\top}$  that give  $\mathbf{R}_k^{\top}\mathbf{R}_k = \mathbf{I}$ .
- 4. Compute  $\mathbf{t}_k = \bar{\mathbf{Y}} \mathbf{R}_k \bar{\mathbf{X}}$ .
- The algorithm can be used for more than 3 points
- Triple pairs can be pre-filtered based on motion invariants (lengths, angles)
- Can be used for the last step of the exterior orientation (P3P) problem  ${\rightarrow}66$

# Module IV

# Computing with a Camera Pair

Camera Motions Inducing Epipolar Geometry, Fundamental and Essential Matrices

Estimating Fundamental Matrix from 7 Correspondences

Estimating Essential Matrix from 5 Correspondences

Triangulation: 3D Point Position from a Pair of Corresponding Points

#### covered by

- [1] [H&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1
- [2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630-633

#### additional references

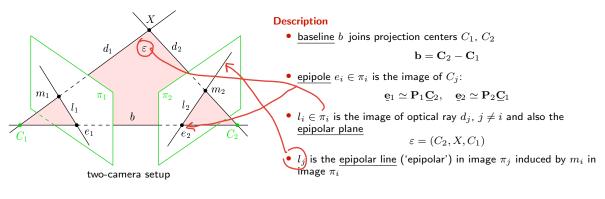
H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293(5828):133–135, 1981.

3D Computer Vision: IV. Computing with a Camera Pair (p. 73/197) のへや

$$\mathbf{P}_{i} = \begin{bmatrix} \mathbf{Q}_{i} & \mathbf{q}_{i} \end{bmatrix} = \mathbf{K}_{i} \begin{bmatrix} \mathbf{R}_{i} & \mathbf{t}_{i} \end{bmatrix} = \mathbf{K}_{i} \mathbf{R}_{i} \begin{bmatrix} \mathbf{I} & -\mathbf{C}_{i} \end{bmatrix} \quad i = 1, 2 \qquad \rightarrow \mathbf{31}$$

**Epipolar geometry:** 

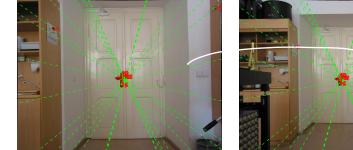
- brings constraints necessary for inter-image matching
- its parametric form encapsulates information about the relative pose of two cameras



**Epipolar constraint relates**  $m_1$  and  $m_2$ : corresponding  $d_2$ , b,  $d_1$  are coplanar

a necessary condition  $\rightarrow 87$ 

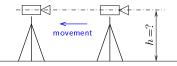
## Epipolar Geometry Example: Forward Motion





- red: correspondences
- green: epipolar line pairs per correspondence •

Epipole is the image of the other camera's center. How high was the camera above the floor?



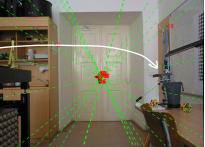


image 2

click on the image to see their IDs same ID in both images

# **Cross Products and Maps by Skew-Symmetric** $3 \times 3$ Matrices

• There is an equivalence  $\mathbf{b} \times \mathbf{m} = [\mathbf{b}]_{\times} \mathbf{m}$ , where  $[\mathbf{b}]_{\times}$  is a  $3 \times 3$  skew-symmetric matrix

$$\begin{bmatrix} \mathbf{b} \end{bmatrix}_{\times} = \begin{bmatrix} 0 & -b_3 & b_2 \\ b_3 & 0 & -b_1 \\ -b_2 & b_1 & 0 \end{bmatrix}, \quad \text{assuming} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \qquad \overset{\mathbf{b}}{}_{1} \overset{\mathbf{b}}{}_{2} \overset{\mathbf{b}}{}_{3} \overset{\mathbf{b}}{}_{3}$$

### Some properties

**1.** 
$$[\mathbf{b}]_{\times}^{\top} = -[\mathbf{b}]_{\times}$$
 the general antisym

- 2. A is skew-symmetric iff  $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = 0$  for all  $\mathbf{x}$
- **3**.  $[\mathbf{b}]^3_{\vee} = -\|\mathbf{b}\|^2 \cdot [\mathbf{b}]_{\vee}$
- $b \times b \equiv \phi$ **4.**  $\|[\mathbf{b}]_{\vee}\|_{r} = \sqrt{2} \|\mathbf{b}\|$ [J] b - Ø
- **5**. rank  $[\mathbf{b}]_{\vee} = 2$  iff  $\|\mathbf{b}\| > 0$

$$\mathbf{6.} \ \left[ \mathbf{b} \right]_{\times} \mathbf{b} = \mathbf{0}$$

- 7. eigenvalues of  $[\mathbf{b}]_{\times}$  are  $(0, \lambda, -\lambda)$
- 8. for any  $3 \times 3$  regular  $\mathbf{B}$ :  $\mathbf{B}^{\top}[\mathbf{B}\mathbf{z}]_{\times}\mathbf{B} = \det \mathbf{B}[\mathbf{z}]_{\times}$
- 9. in particular: if  $\mathbf{R}\mathbf{R}^{\top} = \mathbf{I}$  then  $[\mathbf{R}\mathbf{b}]_{\times} = \mathbf{R}[\mathbf{b}]_{\times}\mathbf{R}^{\top}$
- note that if  $\mathbf{R}_b$  is rotation about  $\mathbf{b}$  then  $\mathbf{R}_b\mathbf{b} = \mathbf{b}$
- note  $[\mathbf{b}]_{\times}$  is not a homography; it is not a rotation matrix

nmetry property

skew-sym mtx generalizes cross products

Frobenius norm 
$$(\|\mathbf{A}\|_F = \sqrt{\operatorname{tr}(\mathbf{A}^{\top}\mathbf{A})} = \sqrt{\sum_{i,j} |a_{ij}|^2})$$

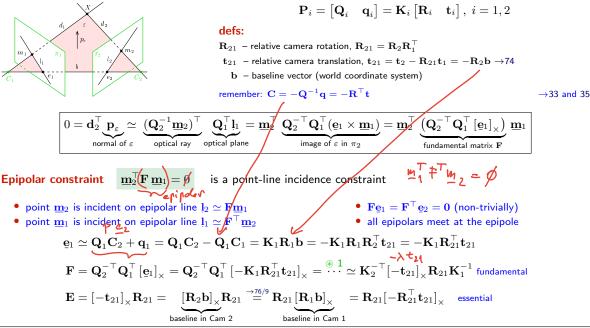
check minors of  $[\mathbf{b}]_{\times}$ 

3

follows from the factoring on  $\rightarrow$  39

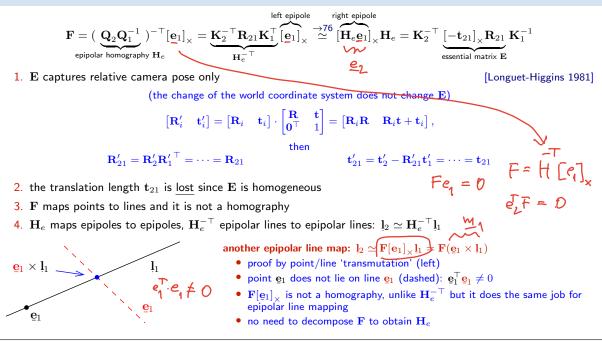
#### it is the logarithm of a rotation mtx

# ► Expressing Epipolar Constraint Algebraically

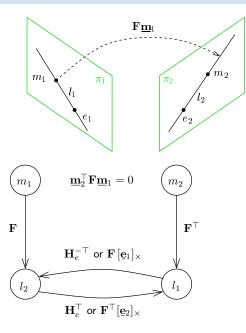


3D Computer Vision: IV. Computing with a Camera Pair (p. 77/197) のへや

# ► The Structure and the Key Properties of the Fundamental Matrix



# Summary: Relations and Mappings Involving Fundamental Matrix



| $0 = \underline{\mathbf{m}}_2^\top \mathbf{F}  \underline{\mathbf{m}}_1$   |                                                                        |
|----------------------------------------------------------------------------|------------------------------------------------------------------------|
| $\underline{\mathbf{e}}_{1}\simeq \operatorname{null}(\mathbf{F}),$        | $\underline{\mathbf{e}}_2 \simeq \operatorname{null}(\mathbf{F}^\top)$ |
| $\mathbf{\underline{e}}_1\simeq \mathbf{H}_e^{-1}\mathbf{\underline{e}}_2$ | $\mathbf{\underline{e}}_2\simeq\mathbf{H}_e\mathbf{\underline{e}}_1$   |
| $\mathbf{l}_1\simeq \mathbf{F}^\top \mathbf{\underline{m}}_2$              | $\mathbf{l}_2\simeq \mathbf{F}\underline{\mathbf{m}}_1$                |
| $\mathbf{l}_1\simeq \mathbf{H}_e^	op \mathbf{l}_2$                         | $\mathbf{l}_2 \simeq \mathbf{H}_e^{-	op} \mathbf{l}_1$                 |
| $\mathbf{l}_1 \simeq \mathbf{F}^{	op} [\mathbf{e}_2]_{	imes} \mathbf{l}_2$ | $\mathbf{l}_2 \simeq \mathbf{F}[\mathbf{e}_1]_{	imes} \mathbf{l}_1$    |

•  $\mathbf{F}[e_1]_{\times}$  maps epipolar lines to epipolar lines but it is not a homography

•  $\mathbf{H}_e = \mathbf{Q}_2 \mathbf{Q}_1^{-1}$  is the epipolar homography $\rightarrow$ 78  $\mathbf{H}_e^{-\top}$  maps epipolar lines to epipolar lines, where

$$\mathbf{H}_e = \mathbf{Q}_2 \mathbf{Q}_1^{-1} = \mathbf{K}_2 \mathbf{R}_{21} \mathbf{K}_1^{-1}$$

you have seen this  ${\rightarrow}59$ 

Thank You

