3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz phone ext. 7203
rev. November 15, 2022

Open Informatics Master's Course

-The Nine Elements of a Data-Driven MH Sampler

data-driven $=$ proposals $q\left(S \mid C_{t}\right)$ are derived from data
Then

1. primitives $=$ elementary measurements

- points in line fitting
- matches in epipolar geometry or homography estimation

2. configuration $=s$-tuple of primitives
minimal subsets necessary for parameter estimate

the minimization will then be over a discrete set:

- of point pairs in line fitting (left)
- of match 7-tuples in epipolar geometry estimation

3. a map from configuration C to parameters $\boldsymbol{\theta}=\boldsymbol{\theta}(C)$ by solving the minimal problem

- line parameters \mathbf{n} from two points
- fundamental matrix \mathbf{F} from seven matches
- homography \mathbf{H} from four matches, etc

$$
\begin{aligned}
\left(\mathbf{x}^{1}, \mathbf{x}^{2}\right) & \mapsto \mathbf{n} \\
\left\{\left(\mathbf{x}_{i}^{1}, \mathbf{x}_{i}^{2}\right)\right\}_{i=1: 7} & \mapsto \mathbf{F} \\
\left\{\left(\mathbf{x}_{i}^{1}, \mathbf{x}_{i}^{2}\right)\right\}_{i=1: 4} & \mapsto \mathbf{H}
\end{aligned}
$$

4. target likelihood $p(E, D \mid \boldsymbol{\theta}(C))$ is represented by $\pi(C)$

- can use log-likelihood: then it is the sum of robust errors $\hat{V}\left(e_{i j}\right)$ given \mathbf{F} (27)
- robustified point distance from the line $\boldsymbol{\theta}=\mathbf{n}$
- robustified Sampson error for $\boldsymbol{\theta}=\mathbf{F}$, etc
- posterior likelihood $p(E, D \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})$ can be used

$>$ cont'd

5. parameter distribution follows the empirical distribution of the s-tuples of primitives. Since the proposal is done via the minimal problem solver, it is 'data-driven',

- pairs of points define line distribution $p(\mathbf{n} \mid X)$ (left)
- random correspondence 7-tuples define epipolar geometry distribution $p(\mathbf{F} \mid M)$

6. proposal distribution $q(\cdot)$ is just a constant(!) distribution of the s-tuples:
a) q uniform, independent $q\left(S \mid C_{t}\right)=q(S)=\binom{m n}{s}^{-1}$, then $a=\min \left\{1, \frac{p(S)}{p\left(C_{t}\right)}\right\}$
b) q dependent on descriptor similarity PROSAC (similar pairs are proposed more often)
c) q dependent on the current configuration C_{t}
7. (optional) hard inlier/outlier discrimination by the threshold (28)

$$
\hat{V}\left(e_{i j}\right)<e_{T}, \quad e_{T}=\sigma_{1} \sqrt{-\log t^{2}}
$$

8. local optimization from promising proposals

- can use the hard inliers or just the robust error (27)
more expensive but more stable
- cannot be used to replace C_{t} it would violate 'detailed balance' required for the MH scheme

9. stopping based on the probability of proposing an all-inlier configuration

Data-Driven Sampler Stopping

- The number of proposals N needed to hit the "true parameters" $=$ an all-inlier configuration:
this will tell us nothing about the accuracy of the result
P ... probability that the last proposal is an all-inlier
$\varepsilon \ldots$ the fraction of inliers among primitives, $\varepsilon \leq 1$
$s \ldots$ No. of primitives in a minimal configuration

$$
1-P \ldots \text { all previous } N \text { proposals contained outliers }
$$

$$
N \geq \frac{\log (1-P)}{\log \left(1-\varepsilon^{s}\right)}
$$

- $\varepsilon^{s} \ldots$ proposal is all-inlier
- $1-\varepsilon^{s} \ldots$ proposal contains at least one outlier
- $\left(1-\varepsilon^{s}\right)^{N} \ldots N$ previous proposals contained an outlier $=1-P$

N for $s=7$		
	P	
ε	0.8	0.99
0.5	205	590
0.2	$1.3 \cdot 10^{5}$	$3.5 \cdot 10^{5}$
0.1	$1.6 \cdot 10^{7}$	$4.6 \cdot 10^{7}$

- N can be re-estimated using the current estimate for ε (if there is LO, then after LO)
the quasi-posterior estimate for ε is the average over all samples generated so far
- this shows we have a good reason to limit all possible matches to tentative matches only
- for $\varepsilon \rightarrow 0$ we gain nothing over the standard MH-sampler stopping rule
not covered in this course

-Stripping MH Down To Get RANSAC [Fischler \& Bolles 1981]

- when we are interested in the best config only... and we need fast data exploration...
- ...then Steps 2-4 below make no difference when waiting for the best sample configuration:

From sampling to RANSACing

1. given C_{t}, draw a random sample S from $q\left(S \mid G_{t}\right) q(S)$
independent sampling no use of information from C_{t}
2. compute acceptance probability

$$
a=\min \left\{1, \frac{\pi(S)}{\pi\left(C_{t}\right)} \cdot \frac{q\left(C_{t} \mid S\right)}{q\left(S \mid C_{t}\right)}\right\}
$$

3. draw a random number u from unit-interval uniform distribution $U_{0, T}$
4. if $u \leq a$ then $C_{t+1}:=S$ else $G_{t+1}:=C_{t}$
5. if $\pi(S)>\pi\left(C_{\text {best }}\right)$ then remember $C_{\text {best }}:=S$

- this is the 'stupid' Method 2 from $\rightarrow 119$
- it has a good overall exploration but slow convergence in the vicinity of a mode where C_{t} could serve as an attractor
- getting a good accuracy configuration might take very long this way
- (possibly robust) 'local optimization' necessary for reasonable performance
- unlike the full sampler, it cannot use the past generated configurations to estimate any parameters

The Opposite End: The Power of MH Sampler

By marginalization in (23) we have lost constraints on M (e.g. uniqueness). One can choose a better model when not marginalizing:

$$
\pi(M, \mathbf{F}, E, D)=\underbrace{p(E \mid M, \mathbf{F})}_{\text {reprojection error }} \cdot \underbrace{p(D \mid M)}_{\text {similarity }} \cdot \underbrace{p(\mathbf{F})}_{\text {prior }} \cdot \underbrace{P(M)}_{\text {constraints }}
$$

this is a global model: decisions on $m_{i j}$ are no longer independent!
In the MH scheme

- one can work with full $p(M, \mathbf{F} \mid E, D)$, then configuration $C=M$

F computable from M

- explicit labeling $m_{i j}$ can be done by, e.g. sampling from

$$
q\left(m_{i j} \mid \mathbf{F}\right) \sim\left(\left(1-P_{0}\right) p_{1}\left(e_{i j} \mid \mathbf{F}\right), P_{0} p_{0}\left(e_{i j} \mid \mathbf{F}\right)\right)
$$

when $P(M)$ uniform then always accepted, $a=1$
\circledast derive

- we can compute the posterior probability of each match $p\left(m_{i j}\right)$ by histogramming $m_{i j}$ from the sequence $\left\{C_{i}\right\}$
- local optimization can then use explicit inliers and $p\left(m_{i j}\right)$
- error can be estimated for the elements of \mathbf{F} from the sequence $\left\{C_{i}\right\}$
does not work in RANSAC
- large error indicates problem degeneracy this is not directly available in RANSAC
- good conditioning is not a requirement we work with the entire distribution $p(\mathbf{F})$
- one can find the most probable number of models (epipolar geometries, homographies, ...) by reversible jump MCMC
if there are multiple models explaning data, RANSAC will return one of them randomly

Example: MH Sampling for a More Complex Problem

Task: Find two vanishing points from line segments detected in input image. Principal point is known, square pixel.

- primitives $=$ line segments

simplifications

- vanishing points restricted to the set of all pairwise segment intersections
- mother lines fixed by segment centroid, then θ_{L} uniquely given by λ_{i}, and the configuration is

$$
C=\left\{v_{1}, v_{2}, \Lambda\right\}
$$

- latent variables

1. each line has a vanishing point label $\lambda_{i} \in\{\emptyset, 1,2\}, \emptyset=$ outlier
2. 'mother line' parameters θ_{L} (they pass through their vanishing points)

- explicit variables

1. two unknown vanishing points v_{1}, v_{2}

- marginal proposals (v_{i} fixed, v_{j} proposed)
- minimal configuration $s=2$

$$
\arg \min _{v_{1}, v_{2}, \Lambda, \theta_{L}} V\left(v_{1}, v_{2}, \Lambda, \theta_{L}\right)
$$

- blue lines point away from the vanishing points
- proposal acceptance: 20%
- ca. 150 iterations to a good solution

Module VI

3D Structure and Camera Motion

6.1 Reconstructing Camera System: From Triples and from Pairs
6.2 Bundle Adjustment
covered by
[1] [H\&Z] Secs: $9.5 .3,10.1,10.2,10.3,12.1,12.2,12.4,12.5,18.1$
[2] Triggs, B. et al. Bundle Adjustment-A Modern Synthesis. In Proc ICCV Workshop on Vision Algorithms. Springer-Verlag. pp. 298-372, 1999.
additional references
D. Martinec and T. Pajdla. Robust Rotation and Translation Estimation in Multiview Reconstruction. In Proc CVPR, 2007

R M. I. A. Lourakis and A. A. Argyros. SBA: A Software Package for Generic Sparse Bundle Adjustment. ACM Trans Math Software 36(1):1-30, 2009.

Reconstructing Camera System by Gluing Camera Triples

Given: Calibration matrices \mathbf{K}_{j} and tentative correspondences per camera triples.
 Initialization

1. initialize camera cluster \mathcal{C} with a pair P_{1}, P_{2}
2. find essential matrix \mathbf{E}_{12} and matches M_{12} by the 5-point algorithm
3. construct camera pair

$$
\mathbf{P}_{1}=\mathbf{K}_{1}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right], \mathbf{P}_{2}=\mathbf{K}_{2}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]
$$

4. triangulate $\left\{X_{i}\right\}$ per match from M_{12} $\rightarrow 106$
5. initialize point cloud \mathcal{X} with $\left\{X_{i}\right\}$ satisfying chirality constraint $z_{i}>0$ and apical angle constraint $\left|\alpha_{i}\right|>\alpha_{T}$

Attaching camera $P_{j} \notin \mathcal{C}$

1. select points \mathcal{X}_{j} from \mathcal{X} that have matches to P_{j}
2. estimate \mathbf{P}_{j} using \mathcal{X}_{j}, RANSAC with the 3-pt alg. (P3P), projection errors $\mathbf{e}_{i j}$ in \mathcal{X}_{j}
3. reconstruct 3D points from all tentative matches from P_{j} to all $P_{l}, l \neq k$ that are not in \mathcal{X}
4. filter them by the chirality and apical angle constraints and add them to \mathcal{X}
5. add P_{j} to \mathcal{C}
6. perform bundle adjustment on \mathcal{X} and \mathcal{C}

Thank You

