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Radim Šára Martin Matoušek
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▶The Nine Elements of a Data-Driven MH Sampler

data-driven = proposals q(S | Ct) are derived from data

Then
1. primitives = elementary measurements

• points in line fitting
• matches in epipolar geometry or homography estimation

2. configuration = s-tuple of primitives minimal subsets necessary for parameter estimate

S

the minimization will then be over a discrete set:

• of point pairs in line fitting (left)
• of match 7-tuples in epipolar geometry estimation

3. a map from configuration C to parameters θ = θ(C) by solving the minimal problem
• line parameters n from two points (x1,x2) 7→ n
• fundamental matrix F from seven matches

{
(x1

i ,x
2
i )
}
i=1:7

7→ F
• homography H from four matches, etc

{
(x1

i ,x
2
i )
}
i=1:4

7→ H

4. target likelihood p(E,D | θ(C)) is represented by π(C)
• can use log-likelihood: then it is the sum of robust errors V̂ (eij) given F (27)

• robustified point distance from the line θ = n
• robustified Sampson error for θ = F, etc

• posterior likelihood p(E,D | θ)p(θ) can be used MAPSAC (π(S) includes the prior)
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▶cont’d

5. parameter distribution follows the empirical distribution of the s-tuples of primitives. Since the proposal is
done via the minimal problem solver, it is ‘data-driven’,

• pairs of points define line distribution p(n | X) (left)
• random correspondence 7-tuples define epipolar geometry distribution p(F | M)

6. proposal distribution q(·) is just a constant(!) distribution of the s-tuples:

a) q uniform, independent q(S | Ct) = q(S) =
(mn

s

)−1
, then a = min

{
1,

p(S)
p(Ct)

}
b) q dependent on descriptor similarity PROSAC (similar pairs are proposed more often)

c) q dependent on the current configuration Ct e.g. ‘not far from Ct’

7. (optional) hard inlier/outlier discrimination by the threshold (28)

V̂ (eij) < eT , eT = σ1

√
− log t2

8. local optimization from promising proposals

• can use the hard inliers or just the robust error (27) more expensive but more stable
• cannot be used to replace Ct it would violate ‘detailed balance’ required for the MH scheme

9. stopping based on the probability of proposing an all-inlier configuration →126
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▶Data-Driven Sampler Stopping

• The number of proposals N needed to hit the “true parameters” = an all-inlier configuration:
this will tell us nothing about the accuracy of the result

P . . . probability that the last proposal is an all-inlier 1 − P . . . all previous N proposals contained outliers

ε . . . the fraction of inliers among primitives, ε ≤ 1
s . . . No. of primitives in a minimal configuration 2 in line fitting, 7 in 7-point algorithm, 4 in homography fitting,. . .

N ≥ log(1− P )

log(1− εs)

• εs . . . proposal is all-inlier
• 1− εs . . . proposal contains at least one outlier
• (1− εs)N . . .N previous proposals contained an outlier = 1− P

N for s = 7
P

ε 0.8 0.99

0.5 205 590
0.2 1.3·105 3.5·105
0.1 1.6·107 4.6·107
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• N can be re-estimated using the current estimate for ε (if there is LO, then after LO)
the quasi-posterior estimate for ε is the average over all samples generated so far

• this shows we have a good reason to limit all possible matches to tentative matches only
• for ε → 0 we gain nothing over the standard MH-sampler stopping rule not covered in this course
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▶Stripping MH Down To Get RANSAC [Fischler & Bolles 1981]

• when we are interested in the best config only. . . and we need fast data exploration. . .
• . . . then Steps 2–4 below make no difference when waiting for the best sample configuration:

From sampling to RANSACing

1. given Ct, draw a random sample S from q(S | Ct) q(S) independent sampling

no use of information from Ct

2. compute acceptance probability

a = min

{
1,

π(S)

π(Ct)
· q(Ct | S)
q(S | Ct)

}
3. draw a random number u from unit-interval uniform distribution U0,1

4. if u ≤ a then Ct+1 := S else Ct+1 := Ct

5. if π(S) > π(Cbest) then remember Cbest := S

• this is the ‘stupid’ Method 2 from →119

• it has a good overall exploration but slow convergence in the vicinity of a mode where Ct could serve as an attractor

• getting a good accuracy configuration might take very long this way

• (possibly robust) ‘local optimization’ necessary for reasonable performance

• unlike the full sampler, it cannot use the past generated configurations to estimate any parameters
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The Opposite End: The Power of MH Sampler

By marginalization in (23) we have lost constraints on M (e.g. uniqueness). One can choose a better model when not
marginalizing:

π(M,F, E,D) = p(E | M,F)︸ ︷︷ ︸
reprojection error

· p(D | M)︸ ︷︷ ︸
similarity

· p(F)︸ ︷︷ ︸
prior

· P (M)︸ ︷︷ ︸
constraints

this is a global model: decisions on mij are no longer independent!

In the MH scheme

• one can work with full p(M,F | E,D), then configuration C = M F computable from M

• explicit labeling mij can be done by, e.g. sampling from

q(mij | F) ∼
(
(1− P0) p1(eij | F), P0 p0(eij | F)

)
when P (M) uniform then always accepted, a = 1 ⊛ derive

• we can compute the posterior probability of each match p(mij) by histogramming mij from the sequence {Ci}
• local optimization can then use explicit inliers and p(mij)

• error can be estimated for the elements of F from the sequence {Ci} does not work in RANSAC

• large error indicates problem degeneracy this is not directly available in RANSAC

• good conditioning is not a requirement we work with the entire distribution p(F)

• one can find the most probable number of models (epipolar geometries, homographies, . . . ) by reversible jump MCMC

if there are multiple models explaning data, RANSAC will return one of them randomly
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Example: MH Sampling for a More Complex Problem

Task: Find two vanishing points from line segments detected in input image. Principal point is known, square pixel.

click for video
simplifications

• vanishing points restricted to the set of all pairwise
segment intersections

• mother lines fixed by segment centroid, then θL
uniquely given by λi, and the configuration is

C = {v1, v2,Λ}

• primitives = line segments
• latent variables

1. each line has a vanishing point label λi ∈ {∅, 1, 2}, ∅ = outlier
2. ‘mother line’ parameters θL (they pass through their vanishing points)

• explicit variables

1. two unknown vanishing points v1, v2

• marginal proposals (vi fixed, vj proposed)
• minimal configuration s = 2

� = 1
� = 2 � = ;v2

v1
arg min

v1,v2,Λ,θL
V (v1, v2,Λ, θL)

• blue lines point away from the vanishing points
• proposal acceptance: 20%
• ca. 150 iterations to a good solution
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Module VI

3D Structure and Camera Motion

6.1Reconstructing Camera System: From Triples and from Pairs

6.2Bundle Adjustment

covered by

[1] [H&Z] Secs: 9.5.3, 10.1, 10.2, 10.3, 12.1, 12.2, 12.4, 12.5, 18.1

[2] Triggs, B. et al. Bundle Adjustment—A Modern Synthesis. In Proc ICCV Workshop on Vision Algorithms.
Springer-Verlag. pp. 298–372, 1999.

additional references

D. Martinec and T. Pajdla. Robust Rotation and Translation Estimation in Multiview Reconstruction. In Proc CVPR, 2007

M. I. A. Lourakis and A. A. Argyros. SBA: A Software Package for Generic Sparse Bundle Adjustment. ACM Trans Math Software

36(1):1–30, 2009.
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▶Reconstructing Camera System by Gluing Camera Triples

Given: Calibration matrices Kj and tentative correspondences per camera triples.

Initialization

1. initialize camera cluster C with a pair P1, P2

2. find essential matrix E12 and matches M12 by the
5-point algorithm →88

3. construct camera pair

P1 = K1

[
I 0

]
, P2 = K2

[
R t

]
4. triangulate {Xi} per match

from M12 →106

5. initialize point cloud X with {Xi} satisfying
chirality constraint zi > 0 and apical angle
constraint |αi| > αT

αi

mi2

ei1(Xi,P1)
eij(Xi,Pj)

mij

PjP2

P1

Xi

mi1

Attaching camera Pj /∈ C
1. select points Xj from X that have matches to Pj

2. estimate Pj using Xj , RANSAC with the 3-pt alg. (P3P), projection errors eij in Xj →66

3. reconstruct 3D points from all tentative matches from Pj to all Pl, l ̸= k that are not in X
4. filter them by the chirality and apical angle constraints and add them to X
5. add Pj to C
6. perform bundle adjustment on X and C coming next →139
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Thank You
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