3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203
rev. October 25, 2022

Open Informatics Master's Course

Representation Theorem for Fundamental Matrices

Def: \mathbf{F} is fundamental when $\mathbf{F} \simeq \mathbf{H}^{-\top}\left[\mathbf{e}_{1}\right]_{\times}$, where \mathbf{H} is regular and $\underline{e}_{1} \simeq \operatorname{null} \mathbf{F} \neq \mathbf{0}$.
Theorem: A 3×3 matrix \mathbf{A} is fundamental iff it is of rank 2 .

Proof.

Direct: By the geometry, \mathbf{H} is full-rank, $\underline{\mathbf{e}}_{1} \neq \mathbf{0}$, hence $\mathbf{H}^{-\top}\left[\underline{\mathbf{e}}_{1}\right]_{\times}$is a 3×3 matrix of rank 2 .

Converse:

1. let $\mathbf{A}=\mathbf{U D V}^{\top}$ be the SVD of \mathbf{A} of rank 2; then $\mathbf{D}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, 0\right), \lambda_{1} \geq \lambda_{2}>0$
2. we write $\mathbf{D}=\mathbf{B C}$, where $\mathbf{B}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right), \mathbf{C}=\operatorname{diag}(1,1,0), \lambda_{3}>0$
3. then $\mathbf{A}=\mathbf{U B C V}^{\top}=\mathbf{U B C} \underbrace{\mathbf{W} \mathbf{W}^{\top}}_{\mathbf{I}} \mathbf{V}^{\top}$ with \mathbf{W} rotation matrix
4. we look for a rotation $m t \times \mathbf{W}$ that maps \mathbf{C} to a skew-symmetric \mathbf{S}, i.e. $\mathbf{S}=\mathbf{C W}$, if any
5. then $\mathbf{W}=\left[\begin{array}{ccc}0 & \alpha & 0 \\ -\alpha & 0 & 0 \\ 0 & 0 & 1\end{array}\right],|\alpha|=1$, and $\mathbf{S}=\mathbf{C W}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{ccc}0 & \alpha & 0 \\ -\alpha & 0 & 0 \\ 0 & 0 & 1\end{array}\right]=\cdots=[\mathbf{s}]_{\times}, \quad$ where $\mathbf{s}=(0,0,1)$
6. we write
$\mathbf{v}_{3}-3$ rd column of $\mathbf{V}, \mathbf{u}_{3}-3$ rd column of \mathbf{U}

$$
\begin{equation*}
\mathbf{A}=\mathbf{U B}[\mathbf{s}]_{\times} \mathbf{W}^{\top} \mathbf{V}^{\top}=\cdots,{ }^{\circledast}=\underbrace{\mathbf{U B}(\mathbf{V W})^{\top}}_{\simeq \mathbf{H}^{-\top}}\left[\mathbf{v}_{3}\right]_{\times} \stackrel{\rightarrow 76 / 9}{\sim} \underbrace{\left[\mathbf{H v}_{3}\right]_{\times}}_{\simeq\left[\mathbf{u}_{3}\right]_{\times}} \mathbf{H} \tag{12}
\end{equation*}
$$

7. \mathbf{H} regular, $\mathbf{A v}_{3}=\mathbf{0}, \mathbf{u}_{3} \mathbf{A}=\mathbf{0}$ for $\mathbf{v}_{3} \neq \mathbf{0}, \mathbf{u}_{3} \neq \mathbf{0}$

- we also got a (non-unique: α, λ_{3}) decomposition formula for fundamental matrices
- it follows there is no constraint on \mathbf{F} except for the rank

Representation Theorem for Essential Matrices

Theorem

Let \mathbf{E} be a 3×3 matrix with $S V D \mathbf{E}=\mathbf{U D V}^{\top}$. Then \mathbf{E} is essential iff $\mathbf{D} \simeq \operatorname{diag}(1,1,0)$.

Proof.
Direct:
If \mathbf{E} is an essential matrix, then the epipolar homography matrix is a rotation matrix $(\rightarrow 78)$, hence $\mathbf{H}^{-\top} \simeq \mathbf{U B}(\mathbf{V W})^{\top}$ in (12) must be (1) diagonal, and (2) (λ-scaled) orthogonal.

It follows $\mathbf{B}=\lambda \mathbf{I}$.
note this fixed the missing λ_{3} in (12)
Then

$$
\mathbf{R}_{21}=\mathbf{H}^{-\top} \simeq \mathbf{U} \mathbf{W}^{\top} \mathbf{V}^{\top} \simeq \mathbf{U} \mathbf{W} \mathbf{V}^{\top}
$$

Converse:

\mathbf{E} is fundamental with

$$
\mathbf{D}=\operatorname{diag}(\lambda, \lambda, 0)=\underbrace{\lambda \mathbf{I}}_{\mathbf{B}} \underbrace{\operatorname{diag}(1,1,0)}_{\mathbf{D}}
$$

then $\mathbf{B}=\lambda \mathbf{I}$ in (12) and $\mathbf{U}(\mathbf{V W})^{\top}$ is orthogonal, as required.

Essential Matrix Decomposition

We are decomposing \mathbf{E} to $\mathbf{E} \simeq\left[\mathbf{u}_{3}\right]_{\times} \mathbf{H} \simeq\left[-\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21}=\mathbf{R}_{21}\left[-\mathbf{R}_{21}^{\top} \mathbf{t}_{21}\right]_{\times} \simeq \mathbf{H}^{-\top}\left[\mathbf{v}_{3}\right]_{\times}$

1. compute SVD of $\mathbf{E}=\mathbf{U D V}^{\top}$ and verify $\mathbf{D}=\lambda \operatorname{diag}(1,1,0)$
2. ensure \mathbf{U}, \mathbf{V} are rotation matrices by $\mathbf{U} \mapsto \operatorname{det}(\mathbf{U}) \mathbf{U}, \mathbf{V} \mapsto \operatorname{det}(\mathbf{V}) \mathbf{V}$
3. compute

Notes

$$
\mathbf{R}_{21}=\mathbf{U} \underbrace{\left[\begin{array}{ccc}
0 & \alpha & 0 \tag{13}\\
-\alpha & 0 & 0 \\
0 & 0 & 1
\end{array}\right]}_{\mathbf{w}} \mathbf{V}^{\top}, \quad \mathbf{t}_{21} \stackrel{(12)}{=}-\beta \mathbf{u}_{3}, \quad|\alpha|=1, \quad \beta \neq 0
$$

- $\mathbf{v}_{3} \simeq \mathbf{R}_{21}^{\top} \mathbf{t}_{21}$ by (12), hence $\mathbf{R}_{21} \mathbf{v}_{3} \simeq \mathbf{t}_{21} \simeq \mathbf{u}_{3}$ since it must fall in left null space by $\mathbf{E} \simeq\left[\mathbf{u}_{3}\right]_{\times} \mathbf{R}_{21}$
- \mathbf{t}_{21} is recoverable up to scale β and direction $\operatorname{sign} \beta$
- the result for \mathbf{R}_{21} is unique up to $\alpha= \pm 1$
- the change of sign in α rotates the solution by 180° about \mathbf{t}_{21}
$\mathbf{R}(\alpha)=\mathbf{U W V}^{\top} \Rightarrow \mathbf{R}(-\alpha)=\mathbf{U} \mathbf{W}^{\top} \mathbf{V}^{\top} \Rightarrow \mathbf{T}=\mathbf{R}(-\alpha) \mathbf{R}^{\top}(\alpha)=\cdots=\mathbf{U} \operatorname{diag}(-1,-1,1) \mathbf{U}^{\top}$
which is a rotation by 180° about $\mathbf{u}_{3} \simeq \mathbf{t}_{21}$: show that \mathbf{u}_{3} is the rotation axis

$$
\mathbf{U} \operatorname{diag}(-1,-1,1) \mathbf{U}^{\top} \mathbf{u}_{3}=\mathbf{U}\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\mathbf{u}_{3}
$$

- 4 solution sets for 4 sign combinations of α, β
see next for geometric interpretation

Four Solutions to Essential Matrix Decomposition

Transform the world coordinate system so that the origin is in Camera 2. Then $\mathbf{t}_{21}=-\mathbf{b}$ and \mathbf{W} rotates about the baseline \mathbf{b}.

How to disambiguate?

- use the chirality constraint: all 3D points are in front of both cameras
- this singles-out the upper left case: front-front

-7-Point Algorithm for Estimating Fundamental Matrix

Problem: Given a set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{k}$ of $k=7$ finite correspondences, estimate f. m. F.

$$
\underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i}=0, \quad i=1, \ldots, k, \quad \underline{\text { known: }} \quad \underline{\mathbf{x}}_{i}=\left(u_{i}^{1}, v_{i}^{1}, 1\right), \quad \underline{\mathbf{y}}_{i}=\left(u_{i}^{2}, v_{i}^{2}, 1\right)
$$

terminology: correspondence $=$ truth, later: match $=$ algorithm's result; hypothesized corresp.

Solution:

$$
\begin{gathered}
\underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i}=\left(\underline{\mathbf{y}}_{i} \underline{\mathbf{x}}_{i}^{\top}\right): \mathbf{F}=\left(\operatorname{vec}\left(\mathbf{y}_{i} \underline{\mathbf{x}}_{i}^{\top}\right)\right)^{\top} \operatorname{vec}(\mathbf{F}), \quad \text { rotation property of matrix trace } \rightarrow 71 \\
\operatorname{vec}(\mathbf{F})=\left[\begin{array}{llll}
f_{11} & f_{21} & f_{31} & \ldots \\
& f_{33}
\end{array}\right]^{\top} \in \mathbb{R}^{9} \\
\mathbf{D}=\left[\begin{array}{c}
\left(\operatorname{vec}\left(\mathbf{y}_{1} \mathbf{x}_{1}^{\top}\right)\right)^{\top} \\
\left(\operatorname{vec}\left(\mathbf{y}_{2} \mathbf{x}_{2}^{\top}\right)\right)^{\top} \\
\left(\operatorname{vec}\left(\mathbf{y}_{3} \mathbf{x}_{3}^{\top}\right)\right)^{\top} \\
\vdots \\
\left(\operatorname{vec}\left(\mathbf{y}_{k} \mathbf{x}_{k}^{\top}\right)\right)^{\top}
\end{array}\right]=\left[\begin{array}{ccccccccc}
u_{1}^{1} u_{1}^{2} & u_{1}^{1} v_{1}^{2} & u_{1}^{1} & u_{1}^{2} v_{1}^{1} & v_{1}^{1} v_{1}^{2} & v_{1}^{1} & u_{1}^{2} & v_{1}^{2} & 1 \\
u_{2}^{1} u_{2}^{2} & u_{2}^{1} v_{2}^{2} & u_{2}^{1} & u_{2}^{2} v_{2}^{1} & v_{2}^{1} v_{2}^{2} & v_{2}^{1} & u_{2}^{2} & v_{2}^{2} & 1 \\
u_{3}^{1} u_{3}^{2} & u_{3}^{1} v_{3}^{2} & u_{3}^{1} & u_{3}^{2} v_{3}^{1} & v_{3}^{1} v_{3}^{2} & v_{3}^{1} & u_{3}^{2} & v_{3}^{2} & 1 \\
\vdots & & & & & & & & \vdots \\
u_{k}^{1} u_{k}^{2} & u_{k}^{1} v_{k}^{2} & u_{k}^{1} & u_{k}^{2} v_{k}^{1} & v_{k}^{1} v_{k}^{2} & v_{k}^{1} & u_{k}^{2} & v_{k}^{2} & 1
\end{array}\right] \in \mathbb{R}^{k, 9} \\
\\
\mathbf{D} \operatorname{vec}(\mathbf{F})=\mathbf{0}
\end{gathered}
$$

7-Point Algorithm Continued

$$
\mathbf{D} \operatorname{vec}(\mathbf{F})=\mathbf{0}, \quad \mathbf{D} \in \mathbb{R}^{k, 9}
$$

- for $k=7$ we have a rank-deficient system, the null-space of \mathbf{D} is 2-dimensional
- but we know that $\operatorname{det} \mathbf{F}=0$, hence

1. find a basis of the null space of $\mathbf{D}: \mathbf{F}_{1}, \mathbf{F}_{2} \quad$ by SVD or QR factorization
2. get up to 3 real solutions for α from

$$
\operatorname{det}\left(\alpha \mathbf{F}_{1}+(1-\alpha) \mathbf{F}_{2}\right)=0 \quad \text { cubic equation in } \alpha
$$

3. get up to 3 fundamental matrices $\mathbf{F}_{i}=\alpha_{i} \mathbf{F}_{1}+\left(1-\alpha_{i}\right) \mathbf{F}_{2}$
4. if $\operatorname{rank} \mathbf{F}_{i}<2$ for all $i=1,2,3$ then fail

- the result may depend on image (domain) transformations
- normalization improves conditioning $\rightarrow 92$
- this gives a good starting point for the full algorithm
- dealing with mismatches need not be a part of the 7-point algorithm

Degenerate Configurations for Fundamental Matrix Estimation

When is \mathbf{F} not uniquely determined from any number of correspondences?
[H\&Z, Sec. 11.9]

1. when images are related by homography
a) camera centers coincide $\mathbf{t}_{21}=0: \quad \mathbf{H}=\mathbf{K}_{2} \mathbf{R}_{21} \mathbf{K}_{1}^{-1} \quad \mathbf{H}-$ as in epipolar homography
b) camera moves but all 3D points lie in a plane (\mathbf{n}, d) : $\quad \mathbf{H}=\mathbf{K}_{2}\left(\mathbf{R}_{21}-\mathbf{t}_{21} \mathbf{n}^{\top} / d\right) \mathbf{K}_{1}^{-1}$

- in either case: epipolar geometry is not defined
- we get an arbitrary solution from the 7-point algorithm, in the form of $\mathbf{F}=[\mathrm{s}]_{\times} \mathbf{H}$
- given (arbitrary, fixed) point \underline{s}

```
note that \([\underline{s}]_{\times} \mathbf{H} \simeq \mathbf{H}^{\prime}\left[\underline{s}^{\prime}\right]_{\times} \rightarrow 76\)
```


- and correspondence $x_{i} \leftrightarrow y_{i}$
- y_{i} is the image of $x_{i}: \underline{\mathbf{y}}_{i} \simeq \mathbf{H} \underline{\mathbf{x}}_{i}$
- a necessary condition: $y_{i} \in l_{i}, \quad \underline{l}_{i} \simeq \underline{\mathbf{s}} \times \mathbf{H} \underline{x}_{i}$

$$
0=\underline{\mathbf{y}}_{i}^{\top}\left(\underline{\mathbf{s}} \times \mathbf{H} \underline{\mathbf{x}}_{i}\right)=\underline{\mathbf{y}}_{i}^{\top}[\underline{\mathbf{s}}]_{\times} \mathbf{H} \underline{\mathbf{x}}_{i} \quad \text { for any } \underline{\mathbf{x}}_{i}, \underline{\mathbf{y}}_{i}, \underline{\mathbf{s}}(!)
$$

2. both camera centers and all 3D points lie on a ruled quadric
hyperboloid of one sheet, cones, cylinders, two planes

- there are 3 solutions for \mathbf{F}
notes
- estimation of $\mathbf{E} \underline{\text { can }}$ deal with planes: $[\underline{s}]_{\times} \mathbf{H}$ is essential, then $\mathbf{H}=\mathbf{R}-\mathbf{t n}^{\top} / d$, and $\underline{s} \simeq \mathbf{t}$ not arbitrary
- a complete treatment with additional degenerate configurations in [H\&Z, sec. 22.2]
- a stronger epipolar constraint could reject some configurations (see next)

A Note on Oriented Epipolar Constraint

- a tighter epipolar constraint that preserves orientations
- requires all points and cameras be on the same side of the plane at infinity

$$
\left(\underline{\mathbf{e}}_{2} \times \underline{\mathbf{m}}_{2}\right) \stackrel{\mathbf{F}}{\sim} \underline{\mathbf{m}}_{1}
$$

notation: $\underline{\mathbf{m}} \underset{\sim}{\mathbf{n}}$ means $\underline{\mathbf{m}}=\lambda \underline{\mathbf{n}}, \lambda>0$

- we can read the constraint as $\left(\underline{\mathbf{e}}_{2} \times \underline{\mathbf{m}}_{2}\right) \stackrel{ \pm}{\sim} \mathbf{H}_{e}^{-\top}\left(\mathbf{e}_{1} \times \underline{\mathbf{m}}_{1}\right)$
- note that the constraint is not invariant to the change of either sign of $\underline{\mathbf{m}}_{i}$
- all 7 correspondence in 7 -point alg. must have the same sign
see later
- this may help reject some wrong matches, see $\rightarrow 112$
- an even more tight constraint: scene points in front of both cameras
[Chum et al. 2004] expensive this is called chirality constraint

-5-Point Algorithm for Relative Camera Orientation

Problem: Given $\left\{m_{i}, m_{i}^{\prime}\right\}_{i=1}^{5}$ corresponding image points and calibration matrix \mathbf{K}, recover the camera motion R, t.
Obs:

1. E - homogeneous 3×3 matrix; 9 numbers up to scale
2. $\mathbf{R}-3$ DOF, $\mathbf{t}-2$ DOF only, in total $5 \mathrm{DOF} \rightarrow$ we need $9-1-5=3$ constraints on \mathbf{E}
3. idea: E essential iff it has two equal singular values and the third is zero $\rightarrow 81$

This gives an equation system:

$$
\begin{aligned}
\underline{\mathbf{v}}_{i}^{\top} \mathbf{E} \underline{\mathbf{v}}_{i}^{\prime} & =0 \\
\operatorname{det} \mathbf{E} & =0 \\
\mathbf{E} \mathbf{E}^{\top} \mathbf{E}-\frac{1}{2} \operatorname{tr}\left(\mathbf{E} \mathbf{E}^{\top}\right) \mathbf{E} & =\mathbf{0}
\end{aligned}
$$

$$
\begin{array}{r}
5 \text { linear constraints }\left(\underline{\mathbf{v}} \simeq \mathbf{K}^{-1} \underline{\mathbf{m}}\right) \\
1 \text { cubic constraint }
\end{array}
$$

9 cubic constraints, 2 independent
\circledast P1; 1pt: verify the last equation from $\mathbf{E}=\mathbf{U D V}^{\top}, \mathbf{D}=\lambda \operatorname{diag}(1,1,0)$

1. estimate \mathbf{E} by SVD from $\underline{\mathbf{v}}_{i}^{\top} \mathbf{E} \underline{\mathbf{v}}_{i}^{\prime}=0$ by the null-space method

4D null space
2. this gives $\mathbf{E} \simeq x \mathbf{E}_{1}+y \mathbf{E}_{2}+z \mathbf{E}_{3}+\mathbf{E}_{4}$
3. at most 10 (complex) solutions for x, y, z from the cubic constraints

- when all 3D points lie on a plane: at most 2 real solutions (twisted-pair)
can be disambiguated in 3 views or by chirality constraint $(\rightarrow 83)$ unless all 3D points are closer to one camera
- 6-point problem for unknown f
[Kukelova et al. BMVC 2008]
- resources at http://aag.ciirc.cvut.cz/minimal/

- The Triangulation Problem

Problem: Given cameras $\mathbf{P}_{1}, \mathbf{P}_{2}$ and a correspondence $x \leftrightarrow y$ compute a 3D point \mathbf{X} projecting to x and y

$$
\lambda_{1} \underline{\mathbf{x}}=\mathbf{P}_{1} \underline{\mathbf{X}}, \quad \lambda_{2} \underline{\mathbf{y}}=\mathbf{P}_{2} \underline{\mathbf{X}}, \quad \underline{\mathbf{x}}=\left[\begin{array}{c}
u^{1} \\
v^{1} \\
1
\end{array}\right], \quad \underline{\mathbf{y}}=\left[\begin{array}{c}
u^{2} \\
v^{2} \\
1
\end{array}\right], \quad \mathbf{P}_{i}=\left[\begin{array}{c}
\left(\mathbf{p}_{1}^{i}\right)^{\top} \\
\left(\mathbf{p}_{2}^{i}\right)^{\top} \\
\left(\mathbf{p}_{3}^{i}\right)^{\top}
\end{array}\right]
$$

Linear triangulation method after eliminating λ_{1}, λ_{2}

$$
\begin{array}{ll}
u^{1}\left(\mathbf{p}_{3}^{1}\right)^{\top} \underline{\mathbf{X}}=\left(\mathbf{p}_{1}^{1}\right)^{\top} \underline{\mathbf{X}}, & u^{2}\left(\mathbf{p}_{3}^{2}\right)^{\top} \underline{\mathbf{X}}=\left(\mathbf{p}_{1}^{2}\right)^{\top} \underline{\mathbf{X}}, \\
v^{1}\left(\mathbf{p}_{3}^{1}\right)^{\top} \underline{\mathbf{X}}=\left(\mathbf{p}_{2}^{1}\right)^{\top} \underline{\mathbf{X}}, & v^{2}\left(\mathbf{p}_{3}^{2}\right)^{\top} \underline{\mathbf{X}}=\left(\mathbf{p}_{2}^{2}\right)^{\top} \underline{\mathbf{X}}
\end{array}
$$

Gives

$$
\mathbf{D} \underline{\mathbf{X}}=\mathbf{0}, \quad \mathbf{D}=\left[\begin{array}{l}
u^{1}\left(\mathbf{p}_{3}^{1}\right)^{\top}-\left(\mathbf{p}_{1}^{1}\right)^{\top} \tag{14}\\
v^{1}\left(\mathbf{p}_{3}^{1}\right)^{\top}-\left(\mathbf{p}_{2}^{1}\right)^{\top} \\
u^{2}\left(\mathbf{p}_{3}^{2}\right)^{\top}-\left(\mathbf{p}_{1}^{2}\right)^{\top} \\
v^{2}\left(\mathbf{p}_{3}^{2}\right)^{\top}-\left(\mathbf{p}_{2}^{2}\right)^{\top}
\end{array}\right], \quad \mathbf{D} \in \mathbb{R}^{4,4}, \quad \underline{\mathbf{X}} \in \mathbb{R}^{4}
$$

- typically, D has full rank (!)
- what else: back-projected rays will generally not intersect due to image error, see next
- what else: using Jack-knife $(\rightarrow 63)$ not recommended
- idea: we will step back and use SVD $(\rightarrow 90)$
- but the result will not be invariant to projective frame
replacing $\mathbf{P}_{1} \mapsto \mathbf{P}_{1} \mathbf{H}, \mathbf{P}_{2} \mapsto \mathbf{P}_{2} \mathbf{H}$ does not always result in $\underline{\mathbf{X}} \mapsto \mathbf{H}^{-1} \underline{\mathbf{X}}$
- note the homogeneous form in (14) can represent points \underline{X} at infinity

- The Least-Squares Triangulation by SVD

- if \mathbf{D} is full-rank we may minimize the algebraic least-squares error

$$
\varepsilon^{2}(\underline{\mathbf{X}})=\|\mathbf{D} \underline{\mathbf{X}}\|^{2} \quad \text { s.t. } \quad\|\underline{\mathbf{X}}\|=1, \quad \underline{\mathbf{X}} \in \mathbb{R}^{4}
$$

- let \mathbf{d}_{i} be the i-th row of \mathbf{D} taken as a column vector, then

$$
\|\mathbf{D} \underline{X}\|^{2}=\sum_{i=1}^{4}\left(\mathbf{d}_{i}^{\top} \underline{\mathbf{X}}\right)^{2}=\sum_{i=1}^{4} \underline{\mathbf{X}}^{\top} \mathbf{d}_{i} \mathbf{d}_{i}^{\top} \underline{\mathbf{X}}=\underline{\mathbf{X}}^{\top} \mathbf{Q} \underline{\mathbf{X}}, \text { where } \mathbf{Q}=\sum_{i=1}^{4} \mathbf{d}_{i} \mathbf{d}_{i}^{\top}=\mathbf{D}^{\top} \mathbf{D} \in \mathbb{R}^{4,4}
$$

- we write the SVD of \mathbf{Q} as $\mathbf{Q}=\sum_{j=1}^{4} \sigma_{j}^{2} \mathbf{u}_{j} \mathbf{u}_{j}^{\top}$, in which

$$
\sigma_{1}^{2} \geq \cdots \geq \sigma_{4}^{2} \geq 0 \quad \text { and } \quad \mathbf{u}_{l}^{\top} \mathbf{u}_{m}= \begin{cases}0 & \text { if } l \neq m \\ 1 & \text { otherwise }\end{cases}
$$

- then $\underline{\mathbf{X}}=\arg \min _{\mathbf{q},\|\mathbf{q}\|=1} \mathbf{q}^{\top} \mathbf{Q} \mathbf{q}=\mathbf{u}_{4}$
the last column of the \mathbf{U} matrix from $\operatorname{SVD}\left(\mathbf{D}^{\top} \mathbf{D}\right)$

Proof (by contradiction).
Let $\overline{\mathbf{q}}=\sum_{i=1}^{4} a_{i} \mathbf{u}_{i}$ s.t. $\sum_{i=1}^{4} a_{i}^{2}=1$, then $\|\overline{\mathbf{q}}\|=1$, as desired, and

$$
\overline{\mathbf{q}}^{\top} \mathbf{Q} \overline{\mathbf{q}}=\sum_{j=1}^{4} \sigma_{j}^{2} \overline{\mathbf{q}}^{\top} \mathbf{u}_{j} \mathbf{u}_{j}^{\top} \overline{\mathbf{q}}=\sum_{j=1}^{4} \sigma_{j}^{2}\left(\mathbf{u}_{j}^{\top} \overline{\mathbf{q}}\right)^{2}=\cdots=\sum_{j=1}^{4} a_{j}^{2} \sigma_{j}^{2} \geq \sum_{j=1}^{4} a_{j}^{2} \sigma_{4}^{2}=\left(\sum_{j=1}^{4} a_{j}^{2}\right) \sigma_{4}^{2}=\sigma_{4}^{2}
$$

since $\sigma_{j} \geq \sigma_{4}$

$>$ cont'd

- if $\sigma_{4} \ll \sigma_{3}$, there is a unique solution $\underline{\mathbf{X}}=\mathbf{u}_{4}$ with residual error $(\mathbf{D} \underline{\mathbf{X}})^{2}=\sigma_{4}^{2}$
the quality (conditioning) of the solution may be expressed as $q=\sigma_{3} / \sigma_{4}$ (greater is better)

Matlab code for the least-squares solver:

```
[U,O,V] = svd(D);
X = V (:,end);
q = sqrt(0(end-1,end-1)/O(end,end));
```

$\circledast \mathrm{P} 1 ; 1 \mathrm{pt}$: Why did we decompose \mathbf{D} here, and not $\mathbf{Q}=\mathbf{D}^{\top} \mathbf{D}$?

- Numerical Conditioning

- The equation $\mathbf{D} \underline{X}=\mathbf{0}$ in (14) may be ill-conditioned for numerical computation, which results in a poor estimate for $\underline{\mathbf{X}}$.

Why: on a row of \mathbf{D} there are big entries together with small entries, e.g. of orders projection centers in mm , image points in px
$\left[\begin{array}{cccc}10^{3} & 0 & 10^{3} & 10^{6} \\ 0 & 10^{3} & 10^{3} & 10^{6} \\ 10^{3} & 0 & 10^{3} & 10^{6} \\ 0 & 10^{3} & 10^{3} & 10^{6}\end{array}\right]$

Quick fix:

1. re-scale the problem by a regular diagonal conditioning matrix $\mathbf{S} \in \mathbb{R}^{4,4}$

$$
\mathbf{0}=\mathbf{D} \underline{\mathbf{X}}=\mathbf{D} \mathbf{S S}^{-1} \underline{\mathbf{X}}=\overline{\mathbf{D}} \underline{\overline{\mathbf{X}}}
$$

choose \mathbf{S} to make the entries in $\hat{\mathbf{D}}$ all smaller than unity in absolute value:

$$
\mathbf{S}=\operatorname{diag}\left(10^{-3}, 10^{-3}, 10^{-3}, 10^{-6}\right) \quad \mathrm{S}=\operatorname{diag}(1 . / \max (\operatorname{abs}(\mathrm{D}),[], 1))
$$

2. solve for $\underline{\bar{X}}$ as before
3. get the final solution as $\underline{\mathbf{X}}=\mathbf{S} \underline{\overline{\mathbf{X}}}$

- when SVD is used in camera resection, conditioning is essential for success

Thank You

