3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/tdv/start

http://cmp.felk.cvut.cz mailto:sara@cmp.felk.cvut.cz phone ext. 7203

rev. October 25, 2022

Open Informatics Master's Course

▶ Representation Theorem for Fundamental Matrices

Def: F is fundamental when $\mathbf{F} \simeq \mathbf{H}^{-\top}[\underline{\mathbf{e}}_1]_{\times}$, where H is regular and $\underline{\mathbf{e}}_1 \simeq \operatorname{null} \mathbf{F} \neq \mathbf{0}$.

Theorem: A 3×3 matrix **A** is fundamental iff it is of rank 2.

Proof.

<u>Direct</u>: By the geometry, **H** is full-rank, $\mathbf{e}_1 \neq \mathbf{0}$, hence $\mathbf{H}^{-\top}[\mathbf{e}_1]_{\times}$ is a 3×3 matrix of rank 2. <u>Converse</u>:

- 1. let $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$ be the SVD of \mathbf{A} of rank 2; then $\mathbf{D} = \operatorname{diag}(\lambda_1, \lambda_2, 0), \ \lambda_1 \ge \lambda_2 > 0$
- 2. we write $\mathbf{D} = \mathbf{BC}$, where $\mathbf{B} = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3)$, $\mathbf{C} = \operatorname{diag}(1, 1, 0)$, $\lambda_3 > 0$
- 3. then $\mathbf{A} = \mathbf{U}\mathbf{B}\mathbf{C}\mathbf{V}^{\top} = \mathbf{U}\mathbf{B}\mathbf{C}\underbrace{\mathbf{W}\mathbf{W}^{\top}}_{\mathbf{v}}\mathbf{V}^{\top}$ with \mathbf{W} rotation matrix
- 4. we look for a rotation mtx W that maps C to a skew-symmetric S, i.e. S = CW, if any

5. then
$$\mathbf{W} = \begin{bmatrix} 0 & \alpha & 0 \\ -\alpha & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $|\alpha| = 1$, and $\mathbf{S} = \mathbf{CW} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & \alpha & 0 \\ -\alpha & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \dots = [\mathbf{s}]_{\times}$, where $\mathbf{s} = (0, 0, 1)$

6. we write

 \mathbf{v}_3 – 3rd column of $\mathbf{V},\,\mathbf{u}_3$ – 3rd column of \mathbf{U}

$$\mathbf{A} = \mathbf{U}\mathbf{B}[\mathbf{s}]_{\times}\mathbf{W}^{\top}\mathbf{V}^{\top} = \overset{\circledast}{\cdots}^{1} = \underbrace{\mathbf{U}\mathbf{B}(\mathbf{V}\mathbf{W})^{\top}}_{\simeq \mathbf{H}^{-\top}} [\mathbf{v}_{3}]_{\times} \overset{\rightarrow^{76/9}}{\simeq} \underbrace{[\mathbf{H}\mathbf{v}_{3}]_{\times}}_{\simeq [\mathbf{u}_{3}]_{\times}} \mathbf{H},$$
(12)

- 7. H regular, $Av_3 = 0$, $u_3A = 0$ for $v_3 \neq 0$, $u_3 \neq 0$
- we also got a (non-unique: α , λ_3) decomposition formula for fundamental matrices
- it follows there is no constraint on F except for the rank

▶ Representation Theorem for Essential Matrices

Theorem

Let E be a 3×3 matrix with SVD $\mathbf{E} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$. Then E is essential iff $\mathbf{D} \simeq \operatorname{diag}(1,1,0)$.

Proof.

Direct:

If E is an essential matrix, then the epipolar homography matrix is a rotation matrix (\rightarrow 78), hence $\mathbf{H}^{-\top} \simeq \mathbf{UB}(\mathbf{VW})^{\top}$ in (12) must be (1) diagonal, and (2) (λ -scaled) orthogonal.

It follows $\mathbf{B} = \lambda \mathbf{I}$.

note this fixed the missing λ_3 in (12)

Then

$$\mathbf{R}_{21} = \mathbf{H}^{-\top} \simeq \mathbf{U} \mathbf{W}^{\top} \mathbf{V}^{\top} \simeq \mathbf{U} \mathbf{W} \mathbf{V}^{\top}$$

Converse:

 ${\bf E}$ is fundamental with

$$\mathbf{D} = \operatorname{diag}(\lambda, \lambda, 0) = \underbrace{\lambda \mathbf{I}}_{\mathbf{B}} \underbrace{\operatorname{diag}(1, 1, 0)}_{\mathbf{D}}$$

then $\mathbf{B} = \lambda \mathbf{I}$ in (12) and $\mathbf{U}(\mathbf{V}\mathbf{W})^{\top}$ is orthogonal, as required.

Essential Matrix Decomposition

We are decomposing \mathbf{E} to $\mathbf{E} \simeq [\mathbf{u}_3]_{\times} \mathbf{H} \simeq [-\mathbf{t}_{21}]_{\times} \mathbf{R}_{21} = \mathbf{R}_{21} [-\mathbf{R}_{21}^{\top} \mathbf{t}_{21}]_{\times} \simeq \mathbf{H}^{-\top} [\mathbf{v}_3]_{\times}$ [H&Z, sec. 9.6]

- **1**. compute SVD of $\mathbf{E} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$ and verify $\mathbf{D} = \lambda \operatorname{diag}(1, 1, 0)$
- 2. ensure U, $\, V$ are rotation matrices by $U\mapsto \det(U)U,\, V\mapsto \det(V)V$
- 3. compute

$$\mathbf{R}_{21} = \mathbf{U} \underbrace{\begin{bmatrix} 0 & \alpha & 0 \\ -\alpha & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\mathbf{W}} \mathbf{V}^{\top}, \quad \mathbf{t}_{21} \stackrel{(12)}{=} -\beta \, \mathbf{u}_3, \qquad |\alpha| = 1, \quad \beta \neq 0$$
(13)

Notes

- $\mathbf{v}_3 \simeq \mathbf{R}_{21}^\top \mathbf{t}_{21}$ by (12), hence $\mathbf{R}_{21} \mathbf{v}_3 \simeq \mathbf{t}_{21} \simeq \mathbf{u}_3$ since it must fall in left null space by $\mathbf{E} \simeq [\mathbf{u}_3]_{\times} \mathbf{R}_{21}$
- \mathbf{t}_{21} is recoverable up to scale eta and direction $\mathrm{sign}\,eta$
- the result for \mathbf{R}_{21} is unique up to $\alpha = \pm 1$

despite non-uniqueness of SVD

• the change of sign in lpha rotates the solution by 180° about ${f t}_{21}$

 $\mathbf{R}(\alpha) = \mathbf{U}\mathbf{W}\mathbf{V}^{\top} \Rightarrow \mathbf{R}(-\alpha) = \mathbf{U}\mathbf{W}^{\top}\mathbf{V}^{\top} \Rightarrow \mathbf{T} = \mathbf{R}(-\alpha)\mathbf{R}^{\top}(\alpha) = \cdots = \mathbf{U}\operatorname{diag}(-1, -1, 1)\mathbf{U}^{\top}$ which is a rotation by 180° about $\mathbf{u}_3 \simeq \mathbf{t}_{21}$: show that \mathbf{u}_3 is the rotation axis

$$\mathbf{U}\operatorname{diag}(-1,-1,1)\mathbf{U}^{\top}\mathbf{u}_{3} = \mathbf{U}\begin{bmatrix}-1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}0\\ 0\\ 1\end{bmatrix} = \mathbf{u}_{3}$$

• 4 solution sets for 4 sign combinations of α , β

see next for geometric interpretation

► Four Solutions to Essential Matrix Decomposition

Transform the world coordinate system so that the origin is in Camera 2. Then $t_{21} = -b$ and W rotates about the baseline b.

- use the chirality constraint: all 3D points are in front of both cameras
- this singles-out the upper left case: front-front

[H&Z, Sec. 9.6.3]

▶7-Point Algorithm for Estimating Fundamental Matrix

Problem: Given a set $\{(x_i, y_i)\}_{i=1}^k$ of k = 7 finite correspondences, estimate f. m. **F**.

$$\underline{\mathbf{y}}_i^{\top} \mathbf{F} \underline{\mathbf{x}}_i = 0, \ i = 1, \dots, k, \quad \underline{\mathsf{known}}: \ \underline{\mathbf{x}}_i = (u_i^1, v_i^1, 1), \ \underline{\mathbf{y}}_i = (u_i^2, v_i^2, 1)$$

terminology: correspondence = truth, later: match = algorithm's result; hypothesized corresp.

Solution:

$$\begin{split} \mathbf{y}_{i}^{\top} \mathbf{F} \, \mathbf{x}_{i} &= (\mathbf{y}_{i} \mathbf{x}_{i}^{\top}) : \mathbf{F} = (\operatorname{vec}(\mathbf{y}_{i} \mathbf{x}_{i}^{\top}))^{\top} \operatorname{vec}(\mathbf{F}), & \text{rotation property of matrix trace} \to 71 \\ \operatorname{vec}(\mathbf{F}) &= \begin{bmatrix} f_{11} & f_{21} & f_{31} & \dots & f_{33} \end{bmatrix}^{\top} \in \mathbb{R}^{9} & \text{column vector from matrix} \\ \mathbf{D} &= \begin{bmatrix} (\operatorname{vec}(\mathbf{y}_{1} \mathbf{x}_{1}^{\top}))^{\top} \\ (\operatorname{vec}(\mathbf{y}_{2} \mathbf{x}_{2}^{\top}))^{\top} \\ (\operatorname{vec}(\mathbf{y}_{2} \mathbf{x}_{3}^{\top}))^{\top} \\ \vdots \\ (\operatorname{vec}(\mathbf{y}_{k} \mathbf{x}_{k}^{\top}))^{\top} \end{bmatrix} = \begin{bmatrix} u_{1}^{1} u_{1}^{2} & u_{1}^{1} v_{1}^{2} & u_{1}^{1} & u_{1}^{2} v_{1}^{1} & v_{1}^{1} v_{1}^{2} & v_{1}^{1} & u_{1}^{2} v_{1}^{2} & 1 \\ u_{2}^{1} u_{2}^{2} & u_{2}^{1} v_{2}^{2} & u_{2}^{1} v_{2}^{2} v_{2}^{1} & v_{2}^{1} v_{2}^{2} & v_{2}^{2} & 1 \\ u_{3}^{1} u_{3}^{2} & u_{3}^{1} v_{3}^{2} & u_{3}^{1} & u_{3}^{2} v_{3}^{1} & v_{3}^{1} v_{3}^{2} & v_{3}^{2} & v_{3}^{2} & 1 \\ \vdots \\ u_{k}^{1} u_{k}^{2} & u_{k}^{1} v_{k}^{2} & u_{k}^{1} & u_{k}^{2} v_{k}^{1} & v_{k}^{1} v_{k}^{2} & v_{k}^{1} & u_{k}^{2} & v_{k}^{2} & 1 \end{bmatrix} \in \mathbb{R}^{k,9} \\ \mathbf{D} \operatorname{vec}(\mathbf{F}) = \mathbf{0} \end{split}$$

►7-Point Algorithm Continued

 $\mathbf{D} \operatorname{vec}(\mathbf{F}) = \mathbf{0}, \quad \mathbf{D} \in \mathbb{R}^{k,9}$

- for k = 7 we have a rank-deficient system, the null-space of D is 2-dimensional
- but we know that $\det \mathbf{F} = 0$, hence
 - **1**. find a basis of the null space of **D**: \mathbf{F}_1 , \mathbf{F}_2
 - 2. get up to 3 real solutions for α from

 $\det(\boldsymbol{\alpha}\mathbf{F}_1 + (1-\boldsymbol{\alpha})\mathbf{F}_2) = 0$ cubic equation in α

- 3. get up to 3 fundamental matrices $\mathbf{F}_i = \alpha_i \mathbf{F}_1 + (1 \alpha_i) \mathbf{F}_2$
- 4. if rank $\mathbf{F}_i < 2$ for all i = 1, 2, 3 then fail
- the result may depend on image (domain) transformations
- normalization improves conditioning
- this gives a good starting point for the full algorithm
- dealing with mismatches need not be a part of the 7-point algorithm

3D Computer Vision: IV. Computing with a Camera Pair (p. 85/197) 200 by SVD or QR factorization

 $\rightarrow 92$

- $\rightarrow 111$
- $\rightarrow 112$

Degenerate Configurations for Fundamental Matrix Estimation

When is F not uniquely determined from any number of correspondences? [H&Z, Sec. 11.9] 1. when images are related by homography a) camera centers coincide $\mathbf{t}_{21} = 0$: $\mathbf{H} = \mathbf{K}_2 \mathbf{R}_{21} \mathbf{K}_1^{-1}$ H – as in epipolar homography b) camera moves but all 3D points lie in a plane (\mathbf{n}, d) : $\mathbf{H} = \mathbf{K}_2(\mathbf{R}_{21} - \mathbf{t}_{21}\mathbf{n}^\top/d)\mathbf{K}_1^{-1}$ in either case: epipolar geometry is not defined • we get an arbitrary solution from the 7-point algorithm, in the form of $\mathbf{F} = [\mathbf{s}]_{\times} \mathbf{H}$ note that $[\mathbf{s}] \, \mathbf{H} \simeq \mathbf{H}'[\mathbf{s}'] \, \mathbf{v} \rightarrow 76$ given (arbitrary, fixed) point s • and correspondence $x_i \leftrightarrow y_i$ $\underline{\mathbf{x}}_i$ $\underline{\mathbf{y}}_i \simeq \mathbf{H} \underline{\mathbf{x}}_i$ • y_i is the image of x_i : $\mathbf{y}_i \simeq \mathbf{H}\mathbf{x}_i$ • a necessary condition: $y_i \in l_i$, $\mathbf{l}_i \simeq \mathbf{s} \times \mathbf{H} \mathbf{x}_i$ $0 = \mathbf{y}_i^{\top}(\mathbf{s} \times \mathbf{H}\mathbf{x}_i) = \mathbf{y}_i^{\top}[\mathbf{s}] \mathbf{H}\mathbf{x}_i \text{ for any } \mathbf{x}_i, \mathbf{y}_i, \mathbf{s} (!)$

- 2. both camera centers and all 3D points lie on a ruled quadric
 - hyperboloid of one sheet, cones, cylinders, two planes

- there are 3 solutions for ${\bf F}$

notes

- estimation of E can deal with planes: $[\mathbf{s}]_{\times}\mathbf{H}$ is essential, then $\mathbf{H} = \mathbf{R} \mathbf{tn}^{\top}/d$, and $\mathbf{s} \simeq \mathbf{t}$ not arbitrary
- a complete treatment with additional degenerate configurations in [H&Z, sec. 22.2]
- a stronger epipolar constraint could reject some configurations (see next)

A Note on Oriented Epipolar Constraint

- a tighter epipolar constraint that preserves orientations
- · requires all points and cameras be on the same side of the plane at infinity

 $(\underline{\mathbf{e}}_2 \times \underline{\mathbf{m}}_2) \stackrel{+}{\sim} \mathbf{F} \, \underline{\mathbf{m}}_1$

notation: $\underline{\mathbf{m}} \stackrel{+}{\sim} \underline{\mathbf{n}}$ means $\underline{\mathbf{m}} = \lambda \underline{\mathbf{n}}, \ \lambda > 0$

- we can read the constraint as $(\underline{\mathbf{e}}_2 \times \underline{\mathbf{m}}_2) \stackrel{+}{\sim} \mathbf{H}_e^{-\top} (\mathbf{e}_1 \times \underline{\mathbf{m}}_1)$
- note that the constraint is not invariant to the change of either sign of $\underline{\mathbf{m}}_i$
- all 7 correspondence in 7-point alg. must have the same sign
- this may help reject some wrong matches, see ${\rightarrow}112$
- an even more tight constraint: scene points in front of both cameras

see later [Chum et al. 2004] expensive

this is called chirality constraint

▶ 5-Point Algorithm for Relative Camera Orientation

Problem: Given $\{m_i, m'_i\}_{i=1}^5$ corresponding image points and calibration matrix **K**, recover the camera motion **R**, t.

Obs:

- 1. \mathbf{E} homogeneous 3×3 matrix; 9 numbers up to scale
- 2. R 3 DOF, t 2 DOF only, in total 5 DOF \rightarrow we need 9 1 5 = 3 constraints on E
- 3. idea: E essential iff it has two equal singular values and the third is zero $\rightarrow 81$

This gives an equation system:

- or by chirality constraint (ightarrow83) unless all 3D points are closer to one camera
 - [Kukelova et al. BMVC 2008]

6-point problem for unknown f
resources at http://aag.ciirc.cvut.cz/minimal/

► The Triangulation Problem

Problem: Given cameras \mathbf{P}_1 , \mathbf{P}_2 and a correspondence $x \leftrightarrow y$ compute a 3D point X projecting to x and y

$$\lambda_1 \, \underline{\mathbf{x}} = \mathbf{P}_1 \underline{\underline{\mathbf{X}}}, \qquad \lambda_2 \, \underline{\mathbf{y}} = \mathbf{P}_2 \underline{\underline{\mathbf{X}}}, \qquad \underline{\mathbf{x}} = \begin{bmatrix} u^1 \\ v^1 \\ 1 \end{bmatrix}, \qquad \underline{\mathbf{y}} = \begin{bmatrix} u^2 \\ v^2 \\ 1 \end{bmatrix}, \qquad \mathbf{P}_i = \begin{bmatrix} (\mathbf{p}_1^i)^\top \\ (\mathbf{p}_2^i)^\top \\ (\mathbf{p}_3^i)^\top \end{bmatrix}$$

Linear triangulation method after eliminating λ_1 , λ_2

 $u^1 (\mathbf{p}_3^1)^\top \mathbf{X} = (\mathbf{p}_1^1)^\top \mathbf{X},$ $u^2 (\mathbf{p}_3^2)^\top \mathbf{X} = (\mathbf{p}_1^2)^\top \mathbf{X},$ $v^2 (\mathbf{p}_3^2)^\top \mathbf{X} = (\mathbf{p}_3^2)^\top \mathbf{X}$ $v^1 (\mathbf{p}_2^1)^\top \mathbf{X} = (\mathbf{p}_2^1)^\top \mathbf{X}$

Gives

$$\mathbf{D}\underline{\mathbf{X}} = \mathbf{0}, \qquad \mathbf{D} = \begin{bmatrix} u^{1} (\mathbf{p}_{3}^{1})^{\top} - (\mathbf{p}_{1}^{1})^{\top} \\ v^{1} (\mathbf{p}_{3}^{1})^{\top} - (\mathbf{p}_{2}^{1})^{\top} \\ u^{2} (\mathbf{p}_{3}^{2})^{\top} - (\mathbf{p}_{1}^{2})^{\top} \\ v^{2} (\mathbf{p}_{3}^{2})^{\top} - (\mathbf{p}_{2}^{2})^{\top} \end{bmatrix}, \qquad \mathbf{D} \in \mathbb{R}^{4,4}, \quad \underline{\mathbf{X}} \in \mathbb{R}^{4}$$
(14)
rank (!)

- typically, **D** has full
- what else: back-projected rays will generally not intersect due to image error, see next
- what else: using Jack-knife $(\rightarrow 63)$ not recommended
- idea: we will step back and use SVD (\rightarrow 90)
- but the result will not be invariant to projective frame

replacing $P_1 \mapsto P_1 H$, $P_2 \mapsto P_2 H$ does not always result in $X \mapsto H^{-1} X$

• note the homogeneous form in (14) can represent points X at infinity

sensitive to small error

► The Least-Squares Triangulation by SVD

• if \mathbf{D} is full-rank we may minimize the algebraic least-squares error

$$\boldsymbol{\varepsilon}^2(\underline{\mathbf{X}}) = \|\mathbf{D}\underline{\mathbf{X}}\|^2 \quad \text{s.t.} \quad \|\underline{\mathbf{X}}\| = 1, \qquad \underline{\mathbf{X}} \in \mathbb{R}^4$$

• let \mathbf{d}_i be the *i*-th row of \mathbf{D} taken as a column vector, then

$$\|\mathbf{D}\underline{\mathbf{X}}\|^2 = \sum_{i=1}^4 (\mathbf{d}_i^\top \underline{\mathbf{X}})^2 = \sum_{i=1}^4 \underline{\mathbf{X}}^\top \mathbf{d}_i \mathbf{d}_i^\top \underline{\mathbf{X}} = \underline{\mathbf{X}}^\top \mathbf{Q} \, \underline{\mathbf{X}}, \text{ where } \mathbf{Q} = \sum_{i=1}^4 \mathbf{d}_i \mathbf{d}_i^\top = \mathbf{D}^\top \mathbf{D} \in \mathbb{R}^{4,4}$$

• we write the SVD of \mathbf{Q} as $\mathbf{Q} = \sum_{j=1}^{\infty} \sigma_j^2 \mathbf{u}_j \mathbf{u}_j^{\top}$, in which

$$\sigma_1^{j=1} \geq \cdots \geq \sigma_4^2 \geq 0$$
 and $\mathbf{u}_l^\top \mathbf{u}_m = \begin{cases} 0 & \text{if } l \neq m \\ 1 & \text{otherwise} \end{cases}$

[Golub & van Loan 2013, Sec. 2.5]

then
$$\underline{\mathbf{X}} = \arg \min_{\mathbf{q}, \|\mathbf{q}\|=1} \mathbf{q}^{\top} \mathbf{Q} \mathbf{q} = \mathbf{u}_4$$
 the last column of the U matrix from $SVD(\mathbf{D}^{\top}\mathbf{D})$

Proof (by contradiction).
Let
$$\mathbf{\bar{q}} = \sum_{i=1}^{4} a_i \mathbf{u}_i$$
 s.t. $\sum_{i=1}^{4} a_i^2 = 1$, then $\|\mathbf{\bar{q}}\| = 1$, as desired, and
 $\mathbf{\bar{q}}^{\top} \mathbf{Q} \, \mathbf{\bar{q}} = \sum_{j=1}^{4} \sigma_j^2 \, \mathbf{\bar{q}}^{\top} \mathbf{u}_j \, \mathbf{u}_j^{\top} \, \mathbf{\bar{q}} = \sum_{j=1}^{4} \sigma_j^2 \, (\mathbf{u}_j^{\top} \, \mathbf{\bar{q}})^2 = \dots = \sum_{j=1}^{4} a_j^2 \sigma_j^2 \geq \sum_{j=1}^{4} a_j^2 \sigma_4^2 = \left(\sum_{j=1}^{4} a_j^2\right) \sigma_4^2 = \sigma_4^2$
since $\sigma_j \geq \sigma_4$

3D Computer Vision: IV. Computing with a Camera Pair (p. 90/197) のへや

П

▶cont'd

• if $\sigma_4 \ll \sigma_3$, there is a unique solution $\underline{\mathbf{X}} = \mathbf{u}_4$ with residual error $(\mathbf{D} \underline{\mathbf{X}})^2 = \sigma_4^2$ the quality (conditioning) of the solution may be expressed as $q = \sigma_3/\sigma_4$ (greater is better)

Matlab code for the least-squares solver:

[U,0,V] = svd(D); X = V(:,end); q = sqrt(0(end-1,end-1)/0(end,end));

 \circledast P1; 1pt: Why did we decompose **D** here, and not $\mathbf{Q} = \mathbf{D}^{\top}\mathbf{D}$?

► Numerical Conditioning

• The equation $D\underline{X} = 0$ in (14) may be ill-conditioned for numerical computation, which results in a poor estimate for \underline{X} .

Why: on a row of D there are big entries together with small entries, e.g. of orders projection centers in mm, image points in px

$$\begin{bmatrix} 10^3 & 0 & 10^3 & 10^6 \\ 0 & 10^3 & 10^3 & 10^6 \\ 10^3 & 0 & 10^3 & 10^6 \\ 0 & 10^3 & 10^3 & 10^6 \end{bmatrix}$$

Quick fix:

1. re-scale the problem by a regular diagonal conditioning matrix $\mathbf{S} \in \mathbb{R}^{4,4}$

$$\mathbf{0} = \mathbf{D}\,\underline{\mathbf{X}} = \mathbf{D}\,\mathbf{S}\,\mathbf{S}^{-1}\underline{\mathbf{X}} = \bar{\mathbf{D}}\,\underline{\bar{\mathbf{X}}}$$

choose ${f S}$ to make the entries in $\hat{{f D}}$ all smaller than unity in absolute value:

 $\mathbf{S} = \text{diag}(10^{-3}, 10^{-3}, 10^{-3}, 10^{-6}) \qquad \qquad \mathbf{S} = \text{diag}(1./\text{max}(\text{abs}(D), [], 1))$

- 2. solve for $\overline{\mathbf{X}}$ as before
- 3. get the final solution as $\underline{\mathbf{X}} = \mathbf{S} \ \underline{\mathbf{X}}$
- when SVD is used in camera resection, conditioning is essential for success

 $\rightarrow 62$

Thank You