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▶Representation Theorem for Fundamental Matrices

Def: F is fundamental when F ≃ H−⊤[e1]×, where H is regular and e1 ≃ nullF ̸= 0.

Theorem: A 3× 3 matrix A is fundamental iff it is of rank 2.

Proof.
Direct: By the geometry, H is full-rank, e1 ̸= 0, hence H−⊤[e1]× is a 3× 3 matrix of rank 2.

Converse:

1. let A = UDV⊤ be the SVD of A of rank 2; then D = diag(λ1, λ2, 0), λ1 ≥ λ2 > 0

2. we write D = BC, where B = diag(λ1, λ2, λ3), C = diag(1, 1, 0), λ3 > 0

3. then A = UBCV⊤ = UBCWW⊤︸ ︷︷ ︸
I

V⊤ with W rotation matrix

4. we look for a rotation mtx W that maps C to a skew-symmetric S, i.e. S = CW, if any

5. then W =

 0 α 0
−α 0 0
0 0 1

, |α| = 1, and S = CW =

1 0 0
0 1 0
0 0 0

 0 α 0
−α 0 0
0 0 1

 = · · · = [s]×, where s = (0, 0, 1)

6. we write v3 – 3rd column of V, u3 – 3rd column of U

A = UB[s]×W⊤V⊤ =
⊛ 1· · · = UB(VW)⊤︸ ︷︷ ︸

≃H−⊤

[v3]×
→76/9
≃ [Hv3]×︸ ︷︷ ︸

≃[u3]×

H, (12)

7. H regular, Av3 = 0, u3A = 0 for v3 ̸= 0, u3 ̸= 0 ⊓⊔
• we also got a (non-unique: α, λ3) decomposition formula for fundamental matrices
• it follows there is no constraint on F except for the rank
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▶Representation Theorem for Essential Matrices

Theorem

Let E be a 3× 3 matrix with SVD E = UDV⊤. Then E is essential iff D ≃ diag(1, 1, 0).

Proof.

Direct:

If E is an essential matrix, then the epipolar homography matrix is a rotation matrix (→78), hence
H−⊤ ≃ UB(VW)⊤ in (12) must be (1) diagonal, and (2) (λ-scaled) orthogonal.

It follows B = λI. note this fixed the missing λ3 in (12)

Then
R21 = H−⊤ ≃ UW⊤V⊤ ≃ UWV⊤

Converse:

E is fundamental with
D = diag(λ, λ, 0) = λI︸︷︷︸

B

diag(1, 1, 0)︸ ︷︷ ︸
D

then B = λI in (12) and U(VW)⊤ is orthogonal, as required. ⊓⊔
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▶Essential Matrix Decomposition

We are decomposing E to E ≃ [u3]×H ≃ [−t21]×R21 = R21[−R⊤
21t21]× ≃ H−⊤[v3]× [H&Z, sec. 9.6]

1. compute SVD of E = UDV⊤ and verify D = λdiag(1, 1, 0)

2. ensure U, V are rotation matrices by U 7→ det(U)U, V 7→ det(V)V

3. compute

R21 = U

 0 α 0
−α 0 0
0 0 1


︸ ︷︷ ︸

W

V⊤, t21
(12)
= −β u3, |α| = 1, β ̸= 0 (13)

Notes
• v3 ≃ R⊤

21t21 by (12), hence R21v3 ≃ t21 ≃ u3 since it must fall in left null space by E ≃ [u3]×R21

• t21 is recoverable up to scale β and direction signβ

• the result for R21 is unique up to α = ±1 despite non-uniqueness of SVD

• the change of sign in α rotates the solution by 180◦ about t21

R(α) = UWV⊤ ⇒ R(−α) = UW⊤V⊤ ⇒ T = R(−α)R⊤(α) = · · · = U diag(−1,−1, 1)U⊤

which is a rotation by 180◦ about u3 ≃ t21: show that u3 is the rotation axis

U diag(−1,−1, 1)U⊤u3 = U

−1 0 0
0 −1 0
0 0 1

00
1

 = u3

• 4 solution sets for 4 sign combinations of α, β see next for geometric interpretation
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▶Four Solutions to Essential Matrix Decomposition

Transform the world coordinate system so that the origin is in Camera 2. Then t21 = −b and W rotates about
the baseline b. →77

b C2C1
C1 C2

α, β front− front −α, β (twisted by W) back− front

C1
C2

C1
C2

α, −β (baseline reversal) back− back −α, −β (combination of both) back− front

How to disambiguate?

• use the chirality constraint: all 3D points are in front of both cameras
• this singles-out the upper left case: front-front [H&Z, Sec. 9.6.3]
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▶7-Point Algorithm for Estimating Fundamental Matrix

Problem: Given a set {(xi, yi)}ki=1 of k = 7 finite correspondences, estimate f. m. F.

y⊤
i Fxi = 0, i = 1, . . . , k, known: xi = (u1

i , v
1
i , 1), yi = (u2

i , v
2
i , 1)

terminology: correspondence = truth, later: match = algorithm’s result; hypothesized corresp.

Solution:

y⊤
i Fxi = (yix

⊤
i ) : F =

(
vec(yix

⊤
i )
)⊤

vec(F), rotation property of matrix trace →71

vec(F) =
[
f11 f21 f31 . . . f33

]⊤∈ R9
column vector from matrix

D =



(
vec(y1x

⊤
1 )
)⊤(

vec(y2x
⊤
2 )
)⊤(

vec(y3x
⊤
3 )
)⊤

...(
vec(ykx

⊤
k )
)⊤

 =


u1
1u

2
1 u1

1v
2
1 u1

1 u2
1v

1
1 v11v

2
1 v11 u2

1 v21 1
u1
2u

2
2 u1

2v
2
2 u1

2 u2
2v

1
2 v12v

2
2 v12 u2

2 v22 1
u1
3u

2
3 u1

3v
2
3 u1

3 u2
3v

1
3 v13v

2
3 v13 u2

3 v23 1
...

...
u1
ku

2
k u1

kv
2
k u1

k u2
kv

1
k v1kv

2
k v1k u2

k v2k 1

 ∈ Rk,9

D vec(F) = 0
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▶7-Point Algorithm Continued

D vec(F) = 0, D ∈ Rk,9

• for k = 7 we have a rank-deficient system, the null-space of D is 2-dimensional

• but we know that detF = 0, hence
1. find a basis of the null space of D: F1, F2 by SVD or QR factorization

2. get up to 3 real solutions for α from

det(αF1 + (1− α)F2) = 0 cubic equation in α

3. get up to 3 fundamental matrices Fi = αiF1 + (1− αi)F2

4. if rankFi < 2 for all i = 1, 2, 3 then fail

• the result may depend on image (domain) transformations
• normalization improves conditioning →92

• this gives a good starting point for the full algorithm →111

• dealing with mismatches need not be a part of the 7-point algorithm →112
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▶Degenerate Configurations for Fundamental Matrix Estimation

When is F not uniquely determined from any number of correspondences? [H&Z, Sec. 11.9]

1. when images are related by homography

a) camera centers coincide t21 = 0: H = K2R21K
−1
1 H – as in epipolar homography

b) camera moves but all 3D points lie in a plane (n, d): H = K2(R21 − t21n⊤/d)K−1
1

• in either case: epipolar geometry is not defined
• we get an arbitrary solution from the 7-point algorithm, in the form of F = [s]×H

note that [s]×H ≃ H′[s′]× →76

s

yi ≃ Hxixi
li

• given (arbitrary, fixed) point s
• and correspondence xi ↔ yi
• yi is the image of xi: yi ≃ Hxi
• a necessary condition: yi ∈ li, li ≃ s×Hxi

0 = y⊤
i (s×Hxi) = y⊤

i [s]×Hxi for any xi,yi, s (!)

2. both camera centers and all 3D points lie on a ruled quadric
hyperboloid of one sheet, cones, cylinders, two planes

• there are 3 solutions for F

notes
• estimation of E can deal with planes: [s]×H is essential, then H = R− tn⊤/d, and s≃ t not arbitrary

• a complete treatment with additional degenerate configurations in [H&Z, sec. 22.2]
• a stronger epipolar constraint could reject some configurations (see next)
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A Note on Oriented Epipolar Constraint

• a tighter epipolar constraint that preserves orientations
• requires all points and cameras be on the same side of the plane at infinity"

b �2�1 d2d1
e2e1m1

X
C2l1 m2C1 l2 (e2 ×m2) +∼ Fm1

notation: m +∼ n means m= λn, λ > 0

• we can read the constraint as (e2 ×m2) +∼ H−⊤
e (e1 ×m1)

• note that the constraint is not invariant to the change of either sign of mi

• all 7 correspondence in 7-point alg. must have the same sign see later

• this may help reject some wrong matches, see →112 [Chum et al. 2004]

• an even more tight constraint: scene points in front of both cameras expensive

this is called chirality constraint
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▶5-Point Algorithm for Relative Camera Orientation

Problem: Given {mi, m
′
i}5i=1 corresponding image points and calibration matrix K, recover the camera motion

R, t.

Obs:
1. E – homogeneous 3× 3 matrix; 9 numbers up to scale

2. R – 3DOF, t – 2DOF only, in total 5DOF → we need 9− 1− 5 = 3 constraints on E

3. idea: E essential iff it has two equal singular values and the third is zero →81

This gives an equation system:

v⊤
i Ev′

i = 0 5 linear constraints (v ≃ K−1m)

detE = 0 1 cubic constraint

EE⊤E− 1

2
tr(EE⊤)E = 0 9 cubic constraints, 2 independent

⊛ P1; 1pt: verify the last equation from E = UDV⊤, D = λ diag(1, 1, 0)

1. estimate E by SVD from v⊤
i Ev′

i = 0 by the null-space method 4D null space

2. this gives E ≃ xE1 + yE2 + zE3 +E4

3. at most 10 (complex) solutions for x, y, z from the cubic constraints

• when all 3D points lie on a plane: at most 2 real solutions (twisted-pair) can be disambiguated in 3 views

or by chirality constraint (→83) unless all 3D points are closer to one camera

• 6-point problem for unknown f [Kukelova et al. BMVC 2008]

• resources at http://aag.ciirc.cvut.cz/minimal/
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▶The Triangulation Problem

Problem: Given cameras P1, P2 and a correspondence x ↔ y compute a 3D point X projecting to x and y

λ1 x= P1X , λ2 y = P2X , x=

u1

v1

1

 , y =

u2

v2

1

 , Pi =

(pi
1)

⊤

(pi
2)

⊤

(pi
3)

⊤


Linear triangulation method after eliminating λ1, λ2

u1 (p1
3)

⊤X= (p1
1)

⊤X, u2 (p2
3)

⊤X= (p2
1)

⊤X,

v1 (p1
3)

⊤X= (p1
2)

⊤X, v2 (p2
3)

⊤X= (p2
2)

⊤X

Gives

DX= 0, D =


u1 (p1

3)
⊤ − (p1

1)
⊤

v1 (p1
3)

⊤ − (p1
2)

⊤

u2 (p2
3)

⊤ − (p2
1)

⊤

v2 (p2
3)

⊤ − (p2
2)

⊤

 , D ∈ R4,4, X ∈ R4 (14)

• typically, D has full rank (!)
• what else: back-projected rays will generally not intersect due to image error, see next
• what else: using Jack-knife (→63) not recommended sensitive to small error

• idea: we will step back and use SVD (→90)
• but the result will not be invariant to projective frame

replacing P1 7→ P1H, P2 7→ P2H does not always result in X 7→ H−1X

• note the homogeneous form in (14) can represent points X at infinity

3D Computer Vision: IV. Computing with a Camera Pair (p. 89/197) R. Šára, CMP; rev. 25–Oct–2022



▶The Least-Squares Triangulation by SVD

• if D is full-rank we may minimize the algebraic least-squares error

ε2(X) = ∥DX∥2 s.t. ∥X∥ = 1, X ∈ R4

• let di be the i-th row of D taken as a column vector, then

∥DX∥2=
4∑

i=1

(d⊤
i X)2 =

4∑
i=1

X⊤did
⊤
i X= X⊤QX, where Q =

4∑
i=1

did
⊤
i = D⊤D ∈ R4,4

• we write the SVD of Q as Q =

4∑
j=1

σ2
j uju

⊤
j , in which [Golub & van Loan 2013, Sec. 2.5]

σ2
1 ≥ · · · ≥ σ2

4 ≥ 0 and u⊤
l um =

{
0 if l ̸= m

1 otherwise

• then X= arg min
q,∥q∥=1

q⊤Qq = u4 the last column of the U matrix from SVD(D⊤D)

Proof (by contradiction).

Let q̄ =
4∑

i=1

aiui s.t.
4∑

i=1

a2i = 1, then ∥q̄∥ = 1, as desired, and

q̄⊤Qq̄ =

4∑
j=1

σ2
j q̄⊤uj u

⊤
j q̄ =

4∑
j=1

σ2
j (u⊤

j q̄)2 = · · · =
4∑

j=1

a2jσ
2
j ≥

4∑
j=1

a2jσ
2
4 =

 4∑
j=1

a2j

σ2
4 = σ2

4

since σj ≥ σ4 ⊓⊔
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▶cont’d

• if σ4 ≪ σ3, there is a unique solution X= u4 with residual error (DX)2 = σ2
4

the quality (conditioning) of the solution may be expressed as q = σ3/σ4 (greater is better)

Matlab code for the least-squares solver:

[U,O,V] = svd(D);

X = V(:,end);

q = sqrt(O(end-1,end-1)/O(end,end));

⊛ P1; 1pt: Why did we decompose D here, and not Q = D⊤D?
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▶Numerical Conditioning

• The equation DX= 0 in (14) may be ill-conditioned for numerical computation,
which results in a poor estimate for X.

Why: on a row of D there are big entries together with small entries, e.g. of orders
projection centers in mm, image points in px

103 0 103 106

0 103 103 106

103 0 103 106

0 103 103 106


Quick fix:

1. re-scale the problem by a regular diagonal conditioning matrix S ∈ R4,4

0 = DX= DSS−1X= D̄ X̄

choose S to make the entries in D̂ all smaller than unity in absolute value:

S = diag(10−3, 10−3, 10−3, 10−6) S = diag(1./max(abs(D), [], 1))

2. solve for X̄ as before
3. get the final solution as X= S X̄

• when SVD is used in camera resection, conditioning is essential for success →62
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Thank You
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