3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203
rev. October 18, 2022

Open Informatics Master's Course

Degenerate (Critical) Configurations for Exterior Orientation

no solution

1. C cocyclic with $\left(X_{1}, X_{2}, X_{3}\right)$
camera sees points on a line

unstable solution

- center of projection C located on the orthogonal circular cylinder with base circumscribing the three points X_{i}
unstable: a small change of X_{i} results in a large change of C
can be detected by error propagation
degenerate
- camera C is coplanar with points $\left(X_{1}, X_{2}, X_{3}\right)$ but is not on the circumscribed circle of $\left(X_{1}, X_{2}, X_{3}\right) \quad$ camera sees points on a line
- additional critical configurations depend on the quadratic equations solver
[Haralick et al. IJCV 1994]

Populating A Little ZOO of Minimal Geometric Problems in CV

problem	given	unknown	slide
camera resection	6 world－image correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{6}$	\mathbf{P}	$\rightarrow 62$
exterior orientation	$\mathbf{K}, 3$ world－image correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{3}$	\mathbf{R}, \mathbf{C}	$\rightarrow 66$
relative orientation	3 world－world correspondences $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{3}$	\mathbf{R}, \mathbf{t}	$\rightarrow 70$

－camera resection and exterior orientation are similar problems in a sense：
－we do resectioning when our camera is uncalibrated
－we do orientation when our camera is calibrated
－relative orientation involves no camera（see next）
it is a recurring problem in 3D vision
－more problems to come

－The Relative Orientation Problem

Problem：Given point triples $\left(X_{1}, X_{2}, X_{3}\right)$ and $\left(Y_{1}, Y_{2}, Y_{3}\right)$ in a general position in \mathbf{R}^{3} such that the correspondence $X_{i} \leftrightarrow Y_{i}$ is known，determine the relative orientation（ \mathbf{R}, \mathbf{t} ）that maps \mathbf{X}_{i} to \mathbf{Y}_{i} ，i．e．

$$
\mathbf{Y}_{i}=\mathbf{R} \mathbf{X}_{i}+\mathbf{t}, \quad i=1,2,3 .
$$

Applies to：

－3D scanners
－merging partial reconstructions from different viewpoints
－generalization of the last step of P3P
Obs：Let the centroid be $\overline{\mathbf{X}}=\frac{1}{3} \sum_{i} \mathbf{X}_{i}$ and analogically for $\overline{\mathbf{Y}}$ ．Then

$$
\overline{\mathbf{Y}}=\mathrm{R} \overline{\mathbf{X}}+\mathrm{t} .
$$

Therefore

$$
\mathbf{Z}_{i} \stackrel{\text { def }}{=}\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)=\mathbf{R}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right) \stackrel{\text { def }}{=} \mathbf{R} \mathbf{W}_{i}
$$

If all dot products are equal， $\mathbf{Z}_{i}^{\top} \mathbf{Z}_{j}=\mathbf{W}_{i}^{\top} \mathbf{W}_{j}$ for $i, j=1,2,3$ ，we have

$$
\mathbf{R}^{*}=\left[\begin{array}{lll}
\mathbf{W}_{1} & \mathbf{W}_{2} & \mathbf{W}_{3}
\end{array}\right]^{-1}\left[\begin{array}{lll}
\mathbf{Z}_{1} & \mathbf{Z}_{2} & \mathbf{Z}_{3}
\end{array}\right]
$$

Poor man＇s solver：
－normalize $\mathbf{W}_{i}, \mathbf{Z}_{i}$ to unit length，use the above formula，and then find the closest rotation matrix
－but this is equivalent to a non－optimal objective
it ignores errors in vector lengths

An Optimal Algorithm for Relative Orientation

We setup a minimization problem

$$
\begin{gathered}
\mathbf{R}^{*}=\arg \min _{\mathbf{R}} \sum_{i=1}^{3}\left\|\mathbf{Z}_{i}-\mathbf{R} \mathbf{W}_{i}\right\|^{2} \quad \text { s.t. } \quad \mathbf{R}^{\top} \mathbf{R}=\mathbf{I}, \quad \operatorname{det} \mathbf{R}=1 \\
\arg \min _{\mathbf{R}} \sum_{i}\left\|\mathbf{Z}_{i}-\mathbf{R} \mathbf{W}_{i}\right\|^{2}=\arg \min _{\mathbf{R}} \sum_{i}\left(\left\|\mathbf{Z}_{i}\right\|^{2}-2 \mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}+\left\|\mathbf{W}_{i}\right\|^{2}\right)=\cdots=\arg \max _{\mathbf{R}} \sum_{i} \mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}
\end{gathered}
$$

Obs 1: Let $\mathbf{A}: \mathbf{B}=\sum_{i, j} a_{i j} b_{i j}$ be the dot-product (Frobenius inner product) over real matrices. Then

$$
\mathbf{A}: \mathbf{B}=\mathbf{B}: \mathbf{A}=\operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{B}\right)=\operatorname{vec}(\mathbf{A})^{\top} \operatorname{vec}(\mathbf{B})=\mathbf{a} \cdot \mathbf{b}
$$

Obs 2: (cyclic property for matrix trace)

$$
\operatorname{tr}(\mathbf{A B C})=\operatorname{tr}(\mathbf{C A B})
$$

Obs 3: $\left(\mathbf{Z}_{i}, \mathbf{W}_{i}\right.$ are vectors)

$$
\mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}=\operatorname{tr}\left(\mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}\right) \stackrel{\mathrm{O} 2}{=} \operatorname{tr}\left(\mathbf{W}_{i} \mathbf{Z}_{i}^{\top} \mathbf{R}\right) \stackrel{\mathrm{O} 1}{=}\left(\mathbf{Z}_{i} \mathbf{W}_{i}^{\top}\right): \mathbf{R}=\mathbf{R}:\left(\mathbf{Z}_{i} \mathbf{W}_{i}^{\top}\right)
$$

Let there be SVD of

$$
\sum_{i} \mathbf{Z}_{i} \mathbf{W}_{i}^{\top} \stackrel{\text { def }}{=} \mathbf{M}=\mathbf{U D} \mathbf{V}^{\top}
$$

Then

$$
\mathbf{R}: \mathbf{M}=\mathbf{R}:\left(\mathbf{U D} \mathbf{V}^{\top}\right) \stackrel{\mathrm{O1}}{=} \operatorname{tr}\left(\mathbf{R}^{\top} \mathbf{U D} \mathbf{V}^{\top}\right) \stackrel{\mathrm{O2}}{=} \operatorname{tr}\left(\mathbf{V}^{\top} \mathbf{R}^{\top} \mathbf{U D}\right) \stackrel{\mathrm{O} 1}{=}\left(\mathbf{U}^{\top} \mathbf{R V}\right): \mathbf{D}
$$

cont'd: The Algorithm

We are solving

$$
\mathbf{R}^{*}=\arg \max _{\mathbf{R}} \sum_{i} \mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}=\arg \max _{\mathbf{R}}\left(\mathbf{U}^{\top} \mathbf{R} \mathbf{V}\right): \mathbf{D}
$$

A particular solution is found as follows:

- $\mathbf{U}^{\top} \mathbf{R V}$ must be (1) orthogonal, and closest to: (2) diagonal and (3) positive definite \mathbf{D}
- Since \mathbf{U}, \mathbf{V} are orthogonal matrices then the solution to the problem is among $\mathbf{R}^{*}=\mathbf{U S V}{ }^{\top}$, where \mathbf{S} is diagonal and orthogonal, i.e. one of

$$
\pm \operatorname{diag}(1,1,1), \quad \pm \operatorname{diag}(1,-1,-1), \quad \pm \operatorname{diag}(-1,1,-1), \quad \pm \operatorname{diag}(-1,-1,1)
$$

- $\mathbf{U}^{\top} \mathbf{V}$ is not necessarily positive definite
- We choose \mathbf{S} so that $\left(\mathbf{R}^{*}\right)^{\top} \mathbf{R}^{*}=\mathbf{I}$

Alg:

1. Compute matrix $\mathbf{M}=\sum_{i} \mathbf{Z}_{i} \mathbf{W}_{i}^{\top}$.
2. Compute SVD $\mathbf{M}=\mathbf{U D V}{ }^{\top}$.
3. Compute all $\mathbf{R}_{k}=\mathbf{U} \mathbf{S}_{k} \mathbf{V}^{\top}$ that give $\mathbf{R}_{k}^{\top} \mathbf{R}_{k}=\mathbf{I}$.
4. Compute $\mathbf{t}_{k}=\overline{\mathbf{Y}}-\mathbf{R}_{k} \overline{\mathbf{X}}$.

- The algorithm can be used for more than 3 points
- Triple pairs can be pre-filtered based on motion invariants (lengths, angles)
- Can be used for the last step of the exterior orientation (P3P) problem $\rightarrow 66$

Module IV

Computing with a Camera Pair

4.1) Camera Motions Inducing Epipolar Geometry, Fundamental and Essential Matrices
4.2 Estimating Fundamental Matrix from 7 Correspondences
4.3 Estimating Essential Matrix from 5 Correspondences
4.4) Triangulation: 3D Point Position from a Pair of Corresponding Points
covered by
[1] [H\&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1
[2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630-633
additional references
\square H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293(5828):133-135, 1981.

Geometric Model of a Camera Stereo Pair

$$
\mathbf{P}_{i}=\left[\begin{array}{ll}
\mathbf{Q}_{i} & \mathbf{q}_{i}
\end{array}\right]=\mathbf{K}_{i}\left[\begin{array}{ll}
\mathbf{R}_{i} & \mathbf{t}_{i}
\end{array}\right]=\mathbf{K}_{i} \mathbf{R}_{i}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}_{i}
\end{array}\right] \quad i=1,2 \quad \rightarrow 31
$$

Epipolar geometry：

－brings constraints necessary for inter－image matching
－its parametric form encapsulates information about the relative pose of two cameras

Description

－baseline b joins projection centers C_{1}, C_{2}

$$
\mathbf{b}=\mathbf{C}_{2}-\mathbf{C}_{1}
$$

－epipole $e_{i} \in \pi_{i}$ is the image of C_{j} ：

$$
\underline{\mathbf{e}}_{1} \simeq \mathbf{P}_{1} \underline{\mathbf{C}}_{2}, \quad \underline{\mathbf{e}}_{2} \simeq \mathbf{P}_{2} \underline{\mathbf{C}}_{1}
$$

－$l_{i} \in \pi_{i}$ is the image of optical ray $d_{j}, j \neq i$ and also the epipolar plane

$$
\varepsilon=\left(C_{2}, X, C_{1}\right)
$$

－l_{j} is the epipolar line（＇epipolar＇）in image π_{j} induced by m_{i} in image π_{i}

Epipolar constraint relates $\underline{\mathbf{m}}_{1}$ and $\underline{\mathbf{m}}_{2}$ ：corresponding d_{2}, b, d_{1} are coplanar a necessary condition $\rightarrow 87$

Epipolar Geometry Example: Forward Motion

image 1

- red: correspondences
- green: epipolar line pairs per correspondence

image 2
click on the image to see their IDs same ID in both images

Epipole is the image of the other camera's center.
How high was the camera above the floor?

Cross Products and Maps by Skew-Symmetric 3×3 Matrices

- There is an equivalence $\mathbf{b} \times \mathbf{m}=[\mathbf{b}]_{\times} \mathbf{m}$, where $[\mathbf{b}]_{\times}$is a 3×3 skew-symmetric matrix

$$
[\mathbf{b}]_{\times}=\left[\begin{array}{ccc}
0 & -b_{3} & b_{2} \\
b_{3} & 0 & -b_{1} \\
-b_{2} & b_{1} & 0
\end{array}\right], \quad \text { assuming } \quad \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Some properties

1. $[\mathbf{b}]_{\times}^{\top}=-[\mathbf{b}]_{\times}$
2. \mathbf{A} is skew-symmetric iff $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}=0$ for all \mathbf{x}
3. $[\mathbf{b}]_{\times}^{3}=-\|\mathbf{b}\|^{2} \cdot[\mathbf{b}]_{\times}$
4. $\left\|[\mathbf{b}]_{\times}\right\|_{F}=\sqrt{2}\|\mathbf{b}\|$
5. $\operatorname{rank}[\mathbf{b}]_{\times}=2$ iff $\|\mathbf{b}\|>0$

Frobenius norm $\left(\|\mathbf{A}\|_{F}=\sqrt{\operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{A}\right)}=\sqrt{\sum_{i, j}\left|a_{i j}\right|^{2}}\right)$ check minors of $[\mathbf{b}]_{\times}$
6. $[\mathbf{b}]_{\times} \mathbf{b}=\mathbf{0}$
7. eigenvalues of $[\mathbf{b}]_{\times}$are $(0, \lambda,-\lambda)$
8. for any 3×3 regular $\mathbf{B}: \quad \mathbf{B}^{\top}[\mathbf{B z}]_{\times} \mathbf{B}=\operatorname{det} \mathbf{B}[\mathbf{z}]_{\times}$
follows from the factoring on $\rightarrow 39$
9. in particular: if $\mathbf{R} \mathbf{R}^{\top}=\mathbf{I}$ then $[\mathbf{R b}]_{\times}=\mathbf{R}[\mathbf{b}]_{\times} \mathbf{R}^{\top}$

- note that if \mathbf{R}_{b} is rotation about \mathbf{b} then $\mathbf{R}_{b} \mathbf{b}=\mathbf{b}$
- note $[\mathbf{b}]_{\times}$is not a homography; it is not a rotation matrix
it is the logarithm of a rotation mtx

Expressing Epipolar Constraint Algebraically

$$
\mathbf{P}_{i}=\left[\begin{array}{ll}
\mathbf{Q}_{i} & \mathbf{q}_{i}
\end{array}\right]=\mathbf{K}_{i}\left[\begin{array}{ll}
\mathbf{R}_{i} & \mathbf{t}_{i}
\end{array}\right], i=1,2
$$

defs:
\mathbf{R}_{21} - relative camera rotation, $\mathbf{R}_{21}=\mathbf{R}_{2} \mathbf{R}_{1}^{\top}$
\mathbf{t}_{21} - relative camera translation, $\mathbf{t}_{21}=\mathbf{t}_{2}-\mathbf{R}_{21} \mathbf{t}_{1}=-\mathbf{R}_{2} \mathbf{b} \rightarrow 74$
b - baseline vector (world coordinate system)
remember: $\mathbf{C}=-\mathbf{Q}^{-1} \mathbf{q}=-\mathbf{R}^{\top} \mathbf{t}$

$$
0=\mathbf{d}_{2}^{\top} \underbrace{\top}_{\text {normal of } \varepsilon} \mathbf{p}_{\varepsilon} \simeq \underbrace{\left(\mathbf{Q}_{2}^{-1} \underline{\mathbf{m}}_{2}\right)^{\top}}_{\text {optical ray }} \underbrace{\mathbf{Q}_{1}^{\top} \underline{\mathbf{l}}_{1}}_{\text {optical plane }}=\underline{\mathbf{m}}_{2}^{\top} \underbrace{\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top}\left(\mathbf{e}_{1} \times \underline{\mathbf{m}}_{1}\right)}_{\text {image of } \varepsilon \text { in } \pi_{2}}=\underline{\mathbf{m}}_{2}^{\top} \underbrace{\left(\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top}\left[\underline{\mathbf{e}}_{1}\right]_{\times}\right)}_{\text {fundamental matrix } \mathbf{F}} \underline{\mathbf{m}}_{1}
$$

Epipolar constraint $\quad \underline{\mathbf{m}}_{2}^{\top} \mathbf{F} \underline{\mathbf{m}}_{1}=0 \quad$ is a point-line incidence constraint

- point $\underline{\mathbf{m}}_{2}$ is incident on epipolar line $\underline{\mathbf{l}}_{2} \simeq \mathbf{F} \underline{\mathbf{m}}_{1}$
- point $\underline{\mathbf{m}}_{1}$ is incident on epipolar line $\underline{l}_{1} \simeq \mathbf{F}^{\top} \underline{\mathbf{m}}_{2}$
- $\mathbf{F e}_{1}=\mathbf{F}^{\top} \underline{\mathbf{e}}_{2}=\mathbf{0}$ (non-trivially)
- all epipolars meet at the epipole

$$
\begin{aligned}
& \underline{\mathbf{e}}_{1} \simeq \mathbf{Q}_{1} \mathbf{C}_{2}+\mathbf{q}_{1}=\mathbf{Q}_{1} \mathbf{C}_{2}-\mathbf{Q}_{1} \mathbf{C}_{1}=\mathbf{K}_{1} \mathbf{R}_{1} \mathbf{b}=-\mathbf{K}_{1} \mathbf{R}_{1} \mathbf{R}_{2}^{\top} \mathbf{t}_{21}=-\mathbf{K}_{1} \mathbf{R}_{21}^{\top} \mathbf{t}_{21} \\
& \mathbf{F}=\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top}\left[\underline{\mathbf{1}}_{1}\right]_{\times}=\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top}\left[-\mathbf{K}_{1} \mathbf{R}_{21}^{\top} \mathbf{t}_{21}\right]_{\times}=\stackrel{1}{\circledast} \simeq \mathbf{K}_{2}^{-\top}\left[-\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21} \mathbf{K}_{1}^{-1} \text { fundamental } \\
& \mathbf{E}=\left[-\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21}=\underbrace{\left[\mathbf{R}_{2} \mathbf{b}\right]_{\times} \mathbf{R}_{21}}_{\text {baseline in Cam 2 }} \stackrel{\rightarrow 76 / 9}{=} \mathbf{R}_{21} \underbrace{\left[\mathbf{R}_{1} \mathbf{b}\right]_{\times}}_{\text {baseline in Cam 1 }}=\mathbf{R}_{21}\left[-\mathbf{R}_{21}^{\top} \mathbf{t}_{21}\right]_{\times} \quad \text { essential }
\end{aligned}
$$

The Structure and the Key Properties of the Fundamental Matrix

$$
\mathbf{F}=(\underbrace{\mathbf{Q}_{2} \mathbf{Q}_{1}^{-1}}_{\text {epipolar homography } \mathbf{H}_{e}})^{-\top}\left[\mathbf{e}_{1}\right]_{\times}=\underbrace{\mathbf{K}_{2}^{-\top} \mathbf{R}_{21} \mathbf{K}_{1}^{\top}}_{\mathbf{H}_{e}^{-\top}} \overbrace{\left[\mathbf{e}_{1}\right]_{\times}}^{\text {left epipole }} \stackrel{\rightarrow}{\sim} \stackrel{7 \mathrm{r}}{\sim} \overbrace{\left[\mathbf{H}_{e} \mathbf{e}_{1}\right]_{\times}}^{\text {right epipole }} \mathbf{H}_{e}=\mathbf{K}_{2}^{-\top} \underbrace{\left[-\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21}}_{\text {essential matrix } \mathbf{E}} \mathbf{K}_{1}^{-1}
$$

1. E captures relative camera pose only
[Longuet-Higgins 1981]
(the change of the world coordinate system does not change \mathbf{E})

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\mathbf{R}_{i}^{\prime} & \mathbf{t}_{i}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{R}_{i} & \mathbf{t}_{i}
\end{array}\right] \cdot\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{R}_{i} \mathbf{R} & \mathbf{R}_{i} \mathbf{t}+\mathbf{t}_{i}
\end{array}\right] } \\
& \mathbf{R}_{21}^{\prime}=\mathbf{R}_{2}^{\prime} \mathbf{R}_{1}^{\prime \top}=\cdots=\mathbf{R}_{21} \text { then } \\
& \mathbf{t}_{21}^{\prime}=\mathbf{t}_{2}^{\prime}-\mathbf{R}_{21}^{\prime} \mathbf{t}_{1}^{\prime}=\cdots=\mathbf{t}_{21}
\end{aligned}
$$

2. the translation length \mathbf{t}_{21} is lost since \mathbf{E} is homogeneous
3. \mathbf{F} maps points to lines and it is not a homography
4. \mathbf{H}_{e} maps epipoles to epipoles, $\mathbf{H}_{e}^{-\top}$ epipolar lines to epipolar lines: $\underline{l}_{2} \simeq \mathbf{H}_{e}^{-\top} \underline{\mathbf{l}}_{1}$

another epipolar line map: $\underline{1}_{2} \simeq \mathbf{F}\left[\mathbf{e}_{1}\right]_{\times} \underline{1}_{1}=\mathbf{F}\left(\underline{e}_{1} \times \underline{1}_{1}\right)$

- proof by point/line 'transmutation' (left)
- point $\underline{\mathbf{e}}_{1}$ does not lie on line $\underline{\mathbf{e}}_{1}$ (dashed): $\underline{\mathbf{e}}_{1}^{\top} \underline{\mathbf{e}}_{1} \neq 0$
- $\mathbf{F}\left[\mathbf{e}_{1}\right]_{\times}$is not a homography, unlike $\mathbf{H}_{e}^{-\top}$ but it does the same job for epipolar line mapping
- no need to decompose \mathbf{F} to obtain \mathbf{H}_{e}

Summary: Relations and Mappings Involving Fundamental Matrix

$$
\begin{array}{rlrl}
0 & =\underline{\mathbf{m}}_{2}^{\top} \mathbf{F} \underline{\mathbf{m}}_{1} & & \\
\underline{\mathbf{e}}_{1} & \simeq \operatorname{null}(\mathbf{F}), & & \underline{\mathbf{e}}_{2} \simeq \operatorname{null}\left(\mathbf{F}^{\top}\right) \\
\underline{\mathbf{e}}_{1} & \simeq \mathbf{H}_{e}^{-1} \underline{\mathbf{e}}_{2} & & \underline{\mathbf{e}}_{2} \simeq \mathbf{H}_{e} \underline{\mathbf{e}}_{1} \\
\underline{\mathbf{l}}_{1} & \simeq \mathbf{F}^{\top} \underline{\mathbf{m}}_{2} & \underline{\mathbf{l}}_{2} \simeq \mathbf{F} \underline{\mathbf{m}}_{1} \\
\underline{\mathbf{l}}_{1} & \simeq \mathbf{H}_{e}^{\top} \underline{\mathbf{l}}_{2} & \underline{\mathbf{l}}_{2} \simeq \mathbf{H}_{e}^{-\top} \underline{\mathbf{l}}_{1} \\
\underline{\mathbf{l}}_{1} & \simeq \mathbf{F}^{\top}\left[\underline{\mathbf{e}}_{2}\right]_{\times} \mathbf{l}_{2} & & \underline{\mathbf{l}}_{2} \simeq \mathbf{F}\left[\underline{\mathbf{e}}_{1}\right]_{\times} \underline{\mathbf{l}}_{1}
\end{array}
$$

- $\mathbf{F}\left[\underline{\mathbf{e}}_{1}\right]_{\times}$maps epipolar lines to epipolar lines but it is not a homography
- $\mathbf{H}_{e}=\mathbf{Q}_{2} \mathbf{Q}_{1}^{-1}$ is the epipolar homography $\rightarrow 78$ $\mathbf{H}_{e}^{-\top}$ maps epipolar lines to epipolar lines, where

$$
\mathbf{H}_{e}=\mathbf{Q}_{2} \mathbf{Q}_{1}^{-1}=\mathbf{K}_{2} \mathbf{R}_{21} \mathbf{K}_{1}^{-1}
$$

Thank You

