3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/tdv/start http://cmp.felk.cvut.cz mailto:sara@cmp.felk.cvut.cz phone ext. 7203

rev. November 22, 2022

Open Informatics Master's Course

▶ Reconstructing Camera System by Gluing Camera Triples

Given: Calibration matrices K_i and tentative correspondences per camera triples.

Initialization

- 1. initialize camera cluster ${\cal C}$ with a pair P_1 , P_2
- 2. find essential matrix ${f E}_{12}$ and matches M_{12} by the 5-point algorithm \longrightarrow 88
- 3. construct camera pair

$$\mathbf{P}_1 = \mathbf{K}_1 \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \quad \mathbf{P}_2 = \mathbf{K}_2 \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}$$

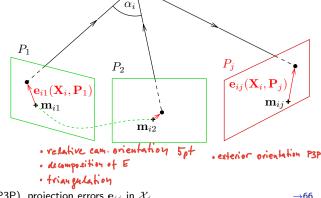
- 4. triangulate $\{X_i\}$ per match from M_{12}
- 5. initialize point cloud $\mathcal X$ with $\{X_i\}$ satisfying chirality constraint $z_i>0$ and apical angle constraint $|\alpha_i|>\alpha_T$

Attaching camera $P_i \notin \mathcal{C}$

- 1. select points \mathcal{X}_j from \mathcal{X} that have matches to P_j
- 2. estimate \mathbf{P}_j using \mathcal{X}_j , RANSAC with the 3-pt alg. (P3P), projection errors \mathbf{e}_{ij} in \mathcal{X}_j
- 3. reconstruct 3D points from all tentative matches from P_i to all P_l , $l \neq k$ that are not in \mathcal{X}

 \rightarrow 106

- 4. filter them by the chirality and apical angle constraints and add them to \mathcal{X}
- 5. add P_i to C
- 6. perform bundle adjustment on ${\mathcal X}$ and ${\mathcal C}$



 \mathbf{X}_i

► The Projective Reconstruction Theorem

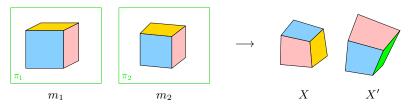
• We can run an analogical procedure when the cameras remain uncalibrated. But:

Observation: Unless P_i are constrained, then for any number of cameras $j = 1, \dots, k$

$$\underline{\mathbf{m}}_{ij} \simeq \mathbf{P}_{j} \underline{\mathbf{X}}_{i} = \underbrace{\mathbf{P}_{j} \mathbf{H}^{-1}}_{\mathbf{P}'_{j}} \underbrace{\mathbf{H} \underline{\mathbf{X}}_{i}}_{\underline{\mathbf{X}}'_{i}} = \mathbf{P}'_{j} \underline{\mathbf{X}}'_{i}$$

• when P_i and \underline{X} are both determined from correspondences (including calibrations K_i), they are given up to a common 3D homography H

(translation, rotation, scale, shear, pure perspectivity)



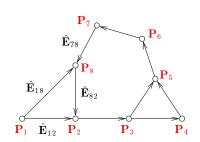
• when cameras are internally calibrated (\mathbf{K}_j known) then \mathbf{H} is restricted to a similarity since it must preserve the calibrations \mathbf{K}_j [H&Z, Secs. 10.2, 10.3], [Longuet-Higgins 1981]

(translation, rotation, scale)

 \rightarrow 134 for an indirect proof

▶ Reconstructing Camera System from Pairs (Correspondence-Free)

Problem: Given a set of p decomposed pairwise essential matrices $\hat{\mathbf{E}}_{ij} = [\hat{\mathbf{t}}_{ij}]_{\times} \hat{\mathbf{R}}_{ij}$ and calibration matrices \mathbf{K}_i reconstruct the camera system \mathbf{P}_i , $i=1,\ldots,k$



We construct calibrated camera pairs $\hat{\mathbf{P}}_{ij} \in \mathbb{R}^{6,4}$ see (17)

$$\hat{\mathbf{P}}_{ij} = egin{bmatrix} \mathbf{K}_i^{-1} \mathbf{P}_i \ \mathbf{K}_i^{-1} \mathbf{P}_j \end{bmatrix} = egin{bmatrix} \mathbf{I} & \mathbf{0} \ \hat{\mathbf{R}}_{ij} & \hat{\mathbf{t}}_{ij} \end{bmatrix} \in \mathbb{R}^{6,4}$$

- ullet singletons $i,\ j$ correspond to graph nodes
- ullet pairs ij correspond to graph edges

$$\hat{\mathbf{P}}_{ij}$$
 are in different coordinate systems but these are related by similarities $\hat{\mathbf{P}}_{ij}\mathbf{H}_{ij} = \mathbf{P}_{ij}$ $\mathbf{H}_{ij} \in \mathrm{SIM}(3)$

$$\underbrace{\begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \hat{\mathbf{R}}_{ij} & \hat{\mathbf{t}}_{ij} \end{bmatrix}}_{\in \mathbb{R}^{6,4}} \underbrace{\begin{bmatrix} \mathbf{R}_{ij} & \mathbf{t}_{ij} \\ \mathbf{0}^{\top} & s_{ij} \end{bmatrix}}_{\mathbf{H}_{ij} \in \mathbb{R}^{4,4}} \stackrel{!}{=} \underbrace{\begin{bmatrix} \mathbf{R}_{i} & \mathbf{t}_{i} \\ \mathbf{R}_{j} & \mathbf{t}_{j} \end{bmatrix}}_{\in \mathbb{R}^{6,4}} \tag{29}$$

- (29) is a system of 24p eqs. in 7p + 6k unknowns
- ullet each $\hat{f P}_i=({f R}_i,\,{f t}_i)$ appears on the RHS as many times as is the degree of node ${f P}_i$

 $7p \sim (\mathbf{t}_{ij}, \mathbf{R}_{ij}, s_{ij}), 6k \sim (\mathbf{R}_i, \mathbf{t}_i)$

k nodes

p edges

eg. P_5 3×

 \rightarrow 81 and \rightarrow 151 on representing **E**

R. Šára, CMP; rev. 22-Nov-2022

$$\begin{bmatrix} \mathbf{R}_{ij} \\ \hat{\mathbf{R}}_{ij} \mathbf{R}_{ij} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_i \\ \mathbf{R}_j \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \mathbf{t}_{ij} \\ \hat{\mathbf{R}}_{ij} \mathbf{t}_{ij} + s_{ij} \hat{\mathbf{t}}_{ij} \end{bmatrix} = \begin{bmatrix} \mathbf{t}_i \\ \mathbf{t}_j \end{bmatrix}$$

• \mathbf{R}_{ij} and \mathbf{t}_{ij} can be eliminated:

ed:

$$\hat{\mathbf{R}}_{ij}\mathbf{R}_{i} = \mathbf{R}_{j}, \qquad \hat{\mathbf{R}}_{ij}\mathbf{t}_{i} + s_{ij}\hat{\mathbf{t}}_{ij} = \mathbf{t}_{j}, \qquad s_{ij} > 0$$
(30)

note transformations that do not change these equations

that do not change these equations assuming no error in
$$\hat{\mathbf{R}}_{ij}$$

1. $\mathbf{R}_i \mapsto \mathbf{R}_i \mathbf{R}$, 2. $\mathbf{t}_i \mapsto \sigma \mathbf{t}_i$ and $s_{ij} \mapsto \sigma s_{ij}$, 3. $\mathbf{t}_i \mapsto \mathbf{t}_i + \mathbf{R}_i \mathbf{t}$

the global frame is fixed, e.g. by selecting

$$\mathbf{R}_1 = \mathbf{I}, \qquad \sum_{i=1}^k \mathbf{t}_i = \mathbf{0}, \qquad \frac{1}{p} \sum_{i,j} \mathbf{s}_{ij} = 1$$
 (31)

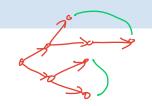
- rotation equations are decoupled from translation equations
- in principle, s_{ij} could correct the sign of $\hat{\mathbf{t}}_{ij}$ from essential matrix decomposition but \mathbf{R}_i cannot correct the lpha sign in $\hat{\mathbf{R}}_{ij}$ \Rightarrow therefore make sure all points are in front of cameras and constrain $s_{ij} > 0; \rightarrow 83$
- pairwise correspondences are sufficient
- suitable for well-distributed cameras only (dome-like configurations) otherwise intractable or numerically unstable

 \rightarrow 81

Finding The Rotation Component in Eq. (30)

1. Poor Man's Algorithm:

- a) create a Minimum Spanning Tree of $\mathcal G$ from o 133
- b) propagate rotations from $\mathbf{R}_1 = \mathbf{I}$ via $\hat{\mathbf{R}}_{ij}\mathbf{R}_i = \mathbf{R}_j$ from (30)



2. Rich Man's Algorithm:

Consider $\hat{\mathbf{R}}_{ij}\mathbf{R}_i = \mathbf{R}_{ij}$, $(i,j) \in E(\mathcal{G})$, where \mathbf{R} are a 3×3 rotation matrices Errors per columns c = 1, 2, 3 of \mathbf{R}_j :

$$\mathbf{e}_{ij}^c = \hat{\mathbf{R}}_{ij}\mathbf{r}_i^c - \mathbf{r}_j^c, \quad \text{for all } i, j$$

Solve

$$\arg\min \sum_{(i,j)\in E(\mathcal{G})} \sum_{c=1}^{3} (\mathbf{e}_{ij}^{c})^{\top} \mathbf{e}_{ij}^{c} \quad \text{s.t.} \quad (\mathbf{r}_{i}^{k})^{\top} (\mathbf{r}_{j}^{l}) = \begin{cases} 1 & i=j \land k=l \\ 0 & i\neq j \land k=l \\ 0 & i=j \land k \neq l \end{cases}$$

this is a quadratic programming problem

3. SVD-Lover's Algorithm: アルードルウン

Ignore the constraints and project the solution onto rotation matrices

see next

SVD Algorithm (cont'd)

Per columns c = 1, 2, 3 of \mathbf{R}_i :

$$\hat{\mathbf{R}}_{ij}\mathbf{r}_i^c - \mathbf{r}_j^c = \mathbf{0}, \qquad \text{for all } i, j$$

- fix c and denote $\mathbf{r}^c = \left[\mathbf{r}_1^c, \mathbf{r}_2^c, \dots, \mathbf{r}_k^c\right]^{ op}$ c-th columns of all rotation matrices stacked; $\mathbf{r}^c \in \mathbb{R}^{3k}$
- then (32) becomes $\mathbf{D} \mathbf{r}^c = \mathbf{0}$

• 3p equations for 3k unknowns $\rightarrow p \geq k$

in a 1-connected graph we have to fix $\mathbf{r}_1^c = [1, 0, 0]$

Ex: (k = p = 3)

$$\hat{\mathbf{E}}_{13}$$
 $\hat{\mathbf{E}}_{23}$
 \mathbf{P}_{1}
 $\hat{\mathbf{E}}_{12}$
 \mathbf{P}_{2}

$$\hat{\mathbf{R}}_{12}\mathbf{r}_{1}^{c} - \mathbf{r}_{2}^{c} = \mathbf{0}$$
 $\hat{\mathbf{R}}_{23}\mathbf{r}_{2}^{c} - \mathbf{r}_{3}^{c} = \mathbf{0}$
 \rightarrow
 $\hat{\mathbf{R}}_{13}\mathbf{r}_{1}^{c} - \mathbf{r}_{3}^{c} = \mathbf{0}$

Idea: 1. find the space of all $\mathbf{r}^c \in \mathbb{R}^{3k}$ that solve (32)

- choose 3 unit orthogonal vectors in this space 3. find closest rotation matrices per cam. using SVD
- global world rotation is arbitrary

 $egin{align*} egin{align*} &\mathbf{R}_{12}\mathbf{r}_{1}^{c}-\mathbf{r}_{2}^{c}&=\mathbf{0} \ &\hat{\mathbf{R}}_{23}\mathbf{r}_{2}^{c}-\mathbf{r}_{3}^{c}&=\mathbf{0} \ &\hat{\mathbf{R}}_{13}\mathbf{r}_{1}^{c}-\mathbf{r}_{3}^{c}&=\mathbf{0} \ \end{pmatrix} & \rightarrow & \mathbf{D}\,\mathbf{r}^{c}&=egin{bmatrix} \mathbf{R}_{12} & -\mathbf{1} & \mathbf{0} \ \mathbf{0} & \hat{\mathbf{R}}_{23} & -\mathbf{I} \ \hat{\mathbf{R}}_{13} & \mathbf{0} & -\mathbf{I} \end{bmatrix} egin{bmatrix} \mathbf{r}_{1}^{c} \ \mathbf{r}_{2}^{c} \ \mathbf{r}_{3}^{c} \end{bmatrix} &=\mathbf{0} \ \end{pmatrix}$ $\begin{array}{c} \left \lfloor \mathbf{R}_{13} \right \rfloor \\ \left \lfloor \mathbf{R}_{13} \right \rfloor \end{array}$ must hold for any c

[Martinec & Pajdla CVPR 2007]

D is sparse, use [V,E] = eigs(D'*D,3,0); (Matlab)

3 smallest eigenvector because $\|\mathbf{r}^c\|=1$ is necessary but insufficient

$$\mathbf{R}_i^* = \mathbf{U}\mathbf{V}^{ op}$$
, where $\mathbf{R}_i = \mathbf{U}\mathbf{D}\mathbf{V}^{ op}$

 $\mathbf{D} \in \mathbb{R}^{3p,3k}$

Finding The Translation Component in Eq. (30)

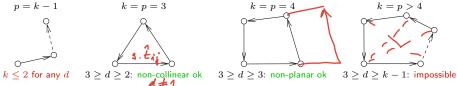
dd (31):
$$0 < d \le 3 - \text{ rank of camera center set, } p - \text{\#pairs, } k - \text{\#cameras}$$

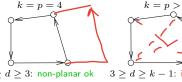
$$\hat{\mathbf{R}}_{ij}\mathbf{t}_i + s_{ij}\hat{\mathbf{t}}_{ij} - \mathbf{t}_j = \mathbf{0}, \qquad \sum_{i=1}^k \mathbf{t}_i = \mathbf{0}, \qquad \sum_{i,j} s_{ij} = p, \qquad s_{ij} > 0, \qquad \mathbf{t}_i \in \mathbb{R}^d$$

• in rank d: $d \cdot p + d + 1$ indep. eqns for $d \cdot k + p$ unknowns $\rightarrow p \geq \frac{d(k-1)-1}{d-1} \stackrel{\text{def}}{=} Q(d,k)$

Ex: Chains and circuits

construction of \mathbf{t}_i from sticks of known orientation $\hat{\mathbf{t}}_{ij}$ and unknown length s_{ij} ?





• equations insufficient for chains, trees, or when d=1

collinear cameras

• 3-connectivity implies sufficient equations for d=3

- cams, in general pos, in 3D
- s-connected graph has $p \ge \lceil \frac{sk}{2} \rceil$ edges for $s \ge 2$, hence $p \ge \lceil \frac{3k}{2} \rceil \ge Q(3,k) = \frac{3k}{2} 2$

- since $p > \lceil 2k \rceil > Q(2, k) = 2k 3$
- maximal planar tringulated graphs have p = 3k 6

coplanar cams

and give a solution for $k \ge 3$

maximal planar triangulated graph example:

Linear equations in (30) and (31) can be rewritten to

$$\mathbf{Dt} = \mathbf{0}, \quad \mathbf{t} = \begin{bmatrix} \mathbf{t}_1^\top, \mathbf{t}_2^\top, \dots, \mathbf{t}_k^\top, s_{12}, \dots, s_{ij}, \dots \end{bmatrix}^\top$$

assuming measurement errors $\mathbf{Dt} = \boldsymbol{\epsilon}$ and d = 3, we have

$$\mathbf{t} \in \mathbb{R}^{3k+p}, \quad \mathbf{D} \in \mathbb{R}^{3p,3k+p}$$
 sparse

and

$$\mathbf{t}^* = \underset{\mathbf{t}, \, s_{ij} > 0}{\arg\min} \ \mathbf{t}^\top \mathbf{D}^\top \mathbf{D} \mathbf{t}$$

this is a quadratic programming problem (mind the constraints!)

```
z = zeros(3*k+p,1);
t = quadprog(D.'*D, z, diag([zeros(3*k,1); -ones(p,1)]), z);
```

but check the rank first!

▶Bundle Adjustment

Goal: Use a good (and expensive) error model and improve the initial estimates of all parameters

Given:

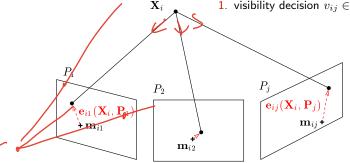
- 1. set of 3D points $\{X_i\}_{i=1}^p$
- 2. set of cameras $\{\mathbf{P}_j\}_{j=1}^c$
- 3. fixed tentative projections \mathbf{m}_{ij}

Required:

- 1. corrected 3D points $\{X_i'\}_{i=1}^p$
- 2. corrected cameras $\{\mathbf{P}_i'\}_{i=1}^c$

Latent:

1. visibility decision $v_{ij} \in \{0,1\}$ per \mathbf{m}_{ij}



- for simplicity, X, m are considered Cartesian (not homogeneous)
- we have projection error $e_{ij}(\mathbf{X}_i, \mathbf{P}_i) = \mathbf{x}_i \mathbf{m}_i$ per image feature, where $\mathbf{x}_i = \mathbf{P}_i \mathbf{X}_i$
- for simplicity, we will work with scalar error $e_{ij} = ||\mathbf{e}_{ij}||$

The data model is

constructed by marginalization over v_{ij} , as in the Robust Matching Model $\rightarrow 116$

$$p(\{\mathbf{e}\} \mid \{\mathbf{P}, \mathbf{X}\}) = \prod_{\mathsf{pts}: i=1}^p \prod_{\mathsf{cams}: j=1}^c \left((1 - P_0) p_1(e_{ij} \mid \mathbf{X}_i, \mathbf{P}_j) + P_0 p_0(e_{ij} \mid \mathbf{X}_i, \mathbf{P}_j) \right)$$

marginalized negative log-density is $(\rightarrow 117)$

ve log-density is
$$(\rightarrow 117)$$

$$-\log p(\{\mathbf{e}\} \mid \{\mathbf{P}, \mathbf{X}\}) = \sum_{i} \sum_{j} \underbrace{-\log \left(e^{-\frac{e_{ij}^{2}(\mathbf{X}_{i}, \mathbf{P}_{j})}{2\sigma_{1}^{2}}} + t\right)}_{\rho(e_{ij}^{2}(\mathbf{X}_{i}, \mathbf{P}_{j})) = \nu_{ij}^{2}(\mathbf{X}_{i}, \mathbf{P}_{j})} \stackrel{\text{def}}{=} \sum_{i} \sum_{j} \nu_{ij}^{2}(\mathbf{X}_{i}, \mathbf{P}_{j})$$

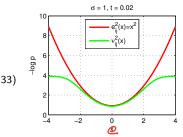
- we can use LM, e_{ij} is the exact projection error function (not Sampson error)
- ν_{ij} is a 'robust' error fcn.; it is non-robust $(\nu_{ij} = e_{ij})$ when t = 0
- $\rho(\cdot)$ is a 'robustification function' often found in M-estimation

• the
$$\mathbf{L}_{ij}$$
 in Levenberg-Marquardt changes to vector
$$(\mathbf{L}_{ij})_l = \frac{\partial \nu_{ij}}{\partial \theta_l} = \underbrace{\frac{1}{1+t\,e^{e_{ij}^2(\theta)/(2\sigma_1^2)}}}_{\text{small for } e_{ij} \gg \sigma_1} \cdot \frac{1}{\nu_{ij}(\theta)} \cdot \frac{1}{4\sigma_1^2} \cdot \frac{\partial e_{ij}^2(\theta)}{\partial \theta_l}$$

but the LM method stays the same as before \rightarrow 108–109

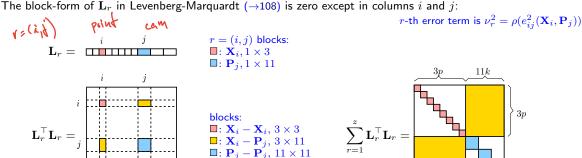
outliers (wrong v_{ij}): almost no impact on \mathbf{d}_s in normal equations because the red term in (33) scales contributions to both sums down for the particular ij

$$-\sum_{i,j} \mathbf{L}_{ij}^{\top} \nu_{ij}(\theta^s) = \left(\sum_{i,j}^k \mathbf{L}_{ij}^{\top} \mathbf{L}_{ij}\right) \mathbf{d}_s$$



► Sparsity in Bundle Adjustment

We have q=3p+11k parameters: $\pmb{\theta}=(\mathbf{X}_1,\mathbf{X}_2,\ldots,\mathbf{X}_p;\,\mathbf{P}_1,\mathbf{P}_2,\ldots,\mathbf{P}_k)$ points, cameras



'points-first-then-cameras" parameterization scheme

▶Choleski Decomposition for B. A.

The most expensive computation in B. A. is solving the normal eqs:

$$\text{find } \mathbf{x} \text{ such that } \quad \mathbf{b} \stackrel{\text{def}}{=} \ -\sum_{r=1}^z \mathbf{L}_r^\top \nu_r(\theta^s) = \Big(\sum_{r=1}^z \mathbf{L}_r^\top \mathbf{L}_r + \lambda \ \mathrm{diag}\big(\mathbf{L}_r^\top \mathbf{L}_r\big)\Big) \mathbf{x} \stackrel{\text{def}}{=} \mathbf{A} \mathbf{x}$$

A is very large

- approx. $3 \cdot 10^4 imes 3 \cdot 10^4$ for a small problem of 10000 points and 5 cameras
- \mathbf{A} is sparse and symmetric, \mathbf{A}^{-1} is dense

an he decomposed to $\mathbf{A} = \mathbf{L} \mathbf{L}^{\top}$

Choleski: symmetric positive definite matrix A can be decomposed to $A = LL^{\top}$, where L is lower triangular. If A is sparse then L is sparse, too.

1. decompose $\mathbf{A} = \mathbf{L}\mathbf{L}^{\top}$

L = chol(A); transforms the problem to $L \underbrace{L^{\top} x} = b$

2. solve for x in two passes:

λ controls the definiteness

$$\mathbf{L} \, \mathbf{c} = \mathbf{b}$$
 $\mathbf{c}_i \coloneqq \mathbf{L}_{ii}^{-1} \left(\mathbf{b}_i - \sum_{j < i} \mathbf{L}_{ij} \mathbf{c}_j \right)$ $\mathbf{L}^{\top} \mathbf{x} = \mathbf{c}$ $\mathbf{x}_i \coloneqq \mathbf{L}_{ii}^{-1} \left(\mathbf{c}_i - \sum_{j < i} \mathbf{L}_{ji} \mathbf{x}_j \right)$

forward substitution, $i=1,\ldots,q$ (params)

back-substitution

direct matrix inversion is prohibitive

- Choleski decomposition is fast (does not touch zero blocks)

 non-zero elements are $9p + 121k + 66pk \approx 3.4 \cdot 10^6$; ca. $250 \times$ fewer than all elements
- it can be computed on single elements or on entire blocks
 use profile Choleski for sparse **A** and diagonal pivoting for semi-definite **A**

see above; [Triggs et al. 1999]

Profile Choleski Decomposition is Simple

```
function L = pchol(A)
% PCHOL profile Choleski factorization,
    L = PCHOL(A) returns lower-triangular sparse L such that A = L*L'
    for sparse square symmetric positive definite matrix A,
     especially efficient for arrowhead sparse matrices.
% (c) 2010 Radim Sara (sara@cmp.felk.cvut.cz)
 [p,q] = size(A);
if p ~= q, error 'Matrix A is not square'; end
L = sparse(q,q);
F = ones(q,1);
for i=1:a
 F(i) = find(A(i,:),1); % 1st non-zero on row i; we are building F gradually
 for i = F(i):i-1
  k = max(F(i),F(j));
  a = A(i,j) - L(i,k:(j-1))*L(j,k:(j-1))';
  L(i,i) = a/L(i,i):
 end
 a = A(i,i) - sum(full(L(i,F(i):(i-1))).^2);
 if a < 0, error 'Matrix A is not positive definite'; end
 L(i,i) = sart(a):
 end
end
```

1. The external frame is not fixed:

See Projective Reconstruction Theorem \rightarrow 132 $\mathbf{m}_{ij} \simeq \mathbf{P}_i \mathbf{X}_i = \mathbf{P}_i \mathbf{H}^{-1} \mathbf{H} \mathbf{X}_i = \mathbf{P}_i' \mathbf{X}_i'$

- 2. Some representations are not minimal, e.g.
- P is 12 numbers for 11 parameters
- \bullet we may represent P in decomposed form $K,\ R,\ t$

ullet but ${f R}$ is 9 numbers representing the 3 parameters of rotation

As a result

- there is no unique solution
- matrix $\sum_r \mathbf{L}_r^{\top} \mathbf{L}_r$ is singular

Solutions

- 1. fixing the external frame (e.g. a selected camera frame) explicitly or by constraints
- 2. fixing the scale (e.g. $s_{12} = 1$)
- 3a. either imposing constraints on projective entities
 - cameras, e.g. $P_{3,4} = 1$
 - points, e.g. $(\underline{\mathbf{X}}_i)_4 = 1$ or $\|\underline{\mathbf{X}}_i\|^2 = 1$
- 3b. or using minimal representations
 - ullet points in their Euclidean representation ${f X}_i$
 - ullet rotation matrices can be represented by skew-symmetric matrices ${
 m o}149$

this excludes affine cameras the 2nd: can represent points at infinity

but finite points may be an unrealistic model

