3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz phone ext. 7203
rev. November 22, 2022

Open Informatics Master's Course

Reconstructing Camera System by Gluing Camera Triples

Given: Calibration matrices \mathbf{K}_{j} and tentative correspondences per camera triples.
 Initialization

1. initialize camera cluster \mathcal{C} with a pair P_{1}, P_{2}
2. find essential matrix \mathbf{E}_{12} and matches M_{12} by the 5-point algorithm
3. construct camerapair

$$
\mathbf{P}_{1}=\left(\begin{array}{ll}
\mathbf{K}_{1}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right], \mathbf{P}_{2}=\mathbf{K}_{2}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right], ~
\end{array}\right.
$$

4. triangulate $\left\{X_{i}\right\}$ per match from M_{12} $\rightarrow 106$
5. initialize point cloud \mathcal{X} with $\left\{X_{i}\right\}$ satisfying chirality constraint $z_{i}>0$ and apical angle constraint $\left|\alpha_{i}\right|>\alpha_{T}$

Attaching camera $P_{j} \notin \mathcal{C}$

1. select points \mathcal{X}_{j} from \mathcal{X} that have matches to P_{j}

- relative cam. orientation 5pt
- decomposition of E
- triangulation

2. estimate \mathbf{P}_{j} using \mathcal{X}_{j}, RANSAC with the 3-pt alg. (P3P), projection errors $\mathbf{e}_{i j}$ in \mathcal{X}_{j}
3. reconstruct 3D points from all tentative matches from P_{j} to all $P_{l}, l \neq k$ that are not in \mathcal{X}
4. filter them by the chirality and apical angle constraints and add them to \mathcal{X}
5. add P_{j} to \mathcal{C}
6. perform bundle adjustment on \mathcal{X} and \mathcal{C}

- The Projective Reconstruction Theorem

- We can run an analogical procedure when the cameras remain uncalibrated. But:

Observation: Unless \mathbf{P}_{j} are constrained, then for any number of cameras $j=1, \ldots, k$

$$
\underline{\mathbf{m}}_{i j} \simeq \mathbf{P}_{j} \underline{\mathbf{X}}_{i}=\underbrace{\mathbf{P}_{j} \mathbf{H}^{-1}}_{\mathbf{P}_{j}^{\prime}} \underbrace{\mathbf{H} \underline{\mathbf{X}}_{i}}_{\underline{\mathbf{X}}_{i}^{\prime}}=\mathbf{P}_{j}^{\prime} \underline{\mathbf{X}}_{i}^{\prime}
$$

- when \mathbf{P}_{i} and $\underline{\mathbf{X}}$ are both determined from correspondences (including calibrations \mathbf{K}_{i}), they are given up to a common 3D homography \mathbf{H}
(translation, rotation, scale, shear, pure perspectivity)

- when cameras are internally calibrated $\left(\mathbf{K}_{j}\right.$ known) then \mathbf{H} is restricted to a similarity since it must preserve the calibrations \mathbf{K}_{j}
(translation, rotation, scale)
[H\&Z, Secs. 10.2, 10.3], [Longuet-Higgins 1981] $\rightarrow 134$ for an indirect proof

Reconstructing Camera System from Pairs (Correspondence-Free)

Problem: Given a set of p decomposed pairwise essential matrices $\hat{\mathbf{E}}_{i j}=\left[\hat{\mathbf{t}}_{i j}\right]_{\times} \hat{\mathbf{R}}_{i j}$ and calibration matrices \mathbf{K}_{i} reconstruct the camera system $\mathbf{P}_{i}, i=1, \ldots, k$
$\rightarrow 81$ and $\rightarrow 151$ on representing \mathbf{E}

We construct calibrated camera pairs $\hat{\mathbf{P}}_{i j} \in \mathbb{R}^{6,4}$

$$
\hat{\mathbf{P}}_{i j}=\left[\begin{array}{l}
\mathbf{K}_{i}^{-1} \overline{\mathbf{P}_{i}} \tag{17}\\
\mathbf{K}_{j}^{-1} \overline{\mathbf{P}_{j}}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\hat{\mathbf{R}}_{i j} & \hat{\mathbf{t}}_{i j}
\end{array}\right] \in \mathbb{R}^{6,4}
$$

- singletons i, j correspond to graph nodes
k nodes
- pairs $i j$ correspond to graph edges p edges
$\hat{\mathbf{P}}_{i j}$ are in different coordinate systems but these are related by similarities $\hat{\mathbf{P}}_{i j} \mathbf{H}_{i j}=\mathbf{P}_{i j}$

$$
\mathbf{H}_{i j} \in \operatorname{SIM}(3)
$$

$$
\underbrace{\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \tag{29}\\
\hat{\mathbf{R}}_{i j} & \hat{\mathbf{t}}_{i j}
\end{array}\right]}_{\in \mathbb{R}^{6,4}} \underbrace{\left[\begin{array}{cc}
\mathbf{R}_{i j} & \mathbf{t}_{i j} \\
\mathbf{0}^{\top} & s_{i j}
\end{array}\right]}_{\mathbf{H}_{i j} \in \mathbb{R}^{4,4}} \stackrel{!}{=} \underbrace{\left[\begin{array}{ll}
\mathbf{R}_{i} & \mathbf{t}_{i} \\
\mathbf{R}_{j} & \mathbf{t}_{j}
\end{array}\right]}_{\in \mathbb{R}^{6,4}}
$$

- (29) is a system of $24 p$ eqs. in $7 p+6 k$ unknowns

$$
\begin{array}{r}
7 p \sim\left(\mathbf{t}_{i j}, \mathbf{R}_{i j}, s_{i j}\right), 6 k \sim\left(\mathbf{R}_{i}, \mathbf{t}_{i}\right) \\
\text { eg. } P_{5} 3 \times
\end{array}
$$

- each $\hat{\mathbf{P}}_{i}=\left(\mathbf{R}_{i}, \mathbf{t}_{i}\right)$ appears on the RHS as many times as is the degree of node \mathbf{P}_{i}

cont'd

Eq. (29) implies

$$
\left[\begin{array}{c}
\mathbf{R}_{i j} \\
\hat{\mathbf{R}}_{i j} \mathbf{R}_{i j}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{R}_{i} \\
\mathbf{R}_{j}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{c}
\mathbf{t}_{i j} \\
\hat{\mathbf{R}}_{i j} \mathbf{t}_{i j}+s_{i j} \hat{\mathbf{t}}_{i j}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{t}_{i} \\
\mathbf{t}_{j}
\end{array}\right]
$$

- $\mathbf{R}_{i j}$ and $\mathrm{t}_{i j}$ can be eliminated:

- note transformations that do not change these equations assuming no error in $\hat{\mathbf{R}}_{i j}$

1. $\mathbf{R}_{i} \mapsto \mathbf{R}_{i} \mathbf{R}$,
2. $\quad \mathbf{t}_{i} \mapsto \sigma \mathbf{t}_{i}$ and $s_{i j} \mapsto \sigma s_{i j}$,
3. $\quad \mathbf{t}_{i} \mapsto \mathbf{t}_{i}+\mathbf{R}_{i} \mathbf{t}$

- the global frame is fixed, e.g. by selecting

$$
\begin{equation*}
\mathbf{R}_{1}=\mathbf{I}, \quad \sum_{i=1}^{k} \mathbf{t}_{i}=\mathbf{0}, \quad \frac{1}{p} \sum_{i, j} s_{i j}=1 \tag{31}
\end{equation*}
$$

- rotation equations are decoupled from translation equations
- in principle, $s_{i j}$ could correct the sign of $\hat{\mathbf{t}}_{i j}$ from essential matrix decomposition
but \mathbf{R}_{i} cannot correct the α sign in $\hat{\mathbf{R}}_{i j} \quad \Rightarrow$ therefore make sure all points are in front of cameras and constrain $s_{i j}>0 ; \rightarrow 83$
+ pairwise correspondences are sufficient
- suitable for well-distributed cameras only (dome-like configurations) otherwise intractable or numerically unstable

Finding The Rotation Component in Eq. (30)

1. Poor Man's Algorithm:

a) create a Minimum Spanning Tree of \mathcal{G} from $\rightarrow 133$
b) propagate rotations from $\mathbf{R}_{1}=\mathbf{I}$ via $\hat{\mathbf{R}}_{i j} \mathbf{R}_{i}=\mathbf{R}_{j}$ from (30)

2. Rich Man's Algorithm:

Consider $\hat{\mathbf{R}}_{i j} \mathbf{R}_{i}=\mathbf{R}_{i},(i, j) \in E(\mathcal{G})$, where \mathbf{R} are a 3×3 rotation matrices Errors per cotumns $c=1,2,3$ of \mathbf{R}_{j} :

$$
\mathbf{e}_{i j}^{c}=\hat{\mathbf{R}}_{i j} \mathbf{r}_{i}^{c}-\mathbf{r}_{j}^{c}, \quad \text { for all } i, j,
$$

Solve

$$
\begin{aligned}
\arg \min \sum_{(i, j) \in E(\mathcal{G})} \sum_{c=1}^{3}\left(\mathbf{e}_{i j}^{c}\right)^{\top} \mathbf{e}_{i j}^{c} \quad \text { s.t. } \quad\left(\mathbf{r}_{i}^{k}\right)^{\top}\left(\mathbf{r}_{j}^{l}\right)= \begin{cases}1 & i=j \wedge k=l \\
0 & i \neq j \wedge k=l \\
0 & i=j \wedge k \neq l\end{cases} \\
\quad\lceil Q \times
\end{aligned}
$$

this is a quadratic programming problem

Solv

SVD Algorithm (cont'd)

Per columns $c=1,2,3$ of \mathbf{R}_{j} :

$$
\begin{equation*}
\hat{\mathbf{R}}_{i j} \mathbf{r}_{i}^{c}-\mathbf{r}_{j}^{c}=\mathbf{0}, \quad \text { for all } i, j \tag{32}
\end{equation*}
$$

- fix c and denote $\mathbf{r}^{c}=\left[\mathbf{r}_{1}^{c}, \mathbf{r}_{2}^{c}, \ldots, \mathbf{r}_{k}^{c}\right]^{\top} \quad c$-th columns of all rotation matrices stacked; $\mathbf{r}^{c} \in \mathbb{R}^{3 k}$
- then (32) becomes $\mathbf{D} \mathbf{r}^{c}=\mathbf{0}$
$\mathbf{D} \in \mathbb{R}^{3 p, 3 k}$
- $3 p$ equations for $3 k$ unknowns $\rightarrow p \geq k$
in a 1-connected graph we have to fix $\mathbf{r}_{1}^{c}=[1,0,0]$
Ex: $(k=p=3)$

Idea:

1. find the space of all $\mathbf{r}^{c} \in \mathbb{R}^{3 k}$ that solve (32)
2. choose 3 unit orthogonal vectors in this space
3. find closest rotation matrices per cam. using SVD

- global world rotation is arbitrary
$\mathbf{D} \mathbf{r}^{c}=\left[\begin{array}{ccc}\hat{\mathbf{R}}_{12} & -\mathbf{I} & \mathbf{0} \\ \mathbf{0} & \hat{\mathbf{R}}_{23} & -\mathbf{I} \\ \hat{\mathbf{R}}_{13} & \mathbf{0} & -\mathbf{I}\end{array}\right]\left[\begin{array}{c}\mathbf{r}_{1}^{c} \\ \mathbf{r}_{2}^{c} \\ \mathbf{r}_{3}^{c}\end{array}\right]=\mathbf{0}$ must hold for any c
[Martinec \& Pajdla CVPR 2007]
D is sparse, use $[\mathrm{V}, \mathrm{E}]=\operatorname{eigs}\left(\mathrm{D}^{\prime} * \mathrm{D}, 3,0\right) ;($ Matlab $)$ 3 smallest eigenvectors

$$
\begin{aligned}
& \text { because }\left\|\mathbf{r}^{c}\right\|=1 \text { is necessary but insufficient } \\
& \mathbf{R}_{i}^{*}=\mathbf{U V}^{\top} \text {, where } \mathbf{R}_{i}=\mathbf{U D V}^{\top} \\
& \text { १ up to }^{\text {d et }}
\end{aligned}
$$

Finding The Translation Component in Eq. (30)

From (30) and (31):
$0<d \leq 3$ - rank of camera center set, $p-$ \#pairs, $k-$ \#cameras $\underbrace{\hat{\mathbf{R}}_{i j} \mathbf{t}_{i}+s_{i j} \hat{\mathbf{t}}_{i j}-\mathbf{t}_{j}=\mathbf{0}}, \quad \sum_{i=1}^{k} \mathbf{t}_{i}=\mathbf{0}, \quad \sum_{i, j} s_{i j}=p, \quad s_{i j}>0, \quad \mathbf{t}_{i} \in \mathbb{R}^{d} \quad 0 . \quad \mathrm{d}=1$

- in rank $d: d \cdot p+d+1$ indep. eqns for $d \cdot k+p$ unknowns $\rightarrow p \geq \frac{d(k-1)-1}{d-1} \stackrel{\text { def }}{=} Q(d, k) \quad \because d=2$

Ex: Chains and circuits

$$
p=k-1
$$

$$
k \leq 2 \text { for any } d
$$

$$
k=p=3
$$

$3 \geq d \geq 2:$ non-collinear ok

$3 \geq d \geq 3$: non-planar ok

$3 \geq d \geq k-1$: impossible

- equations insufficient for chains, trees, or when $d=1$
collinear cameras
- 3-connectivity implies sufficient equations for $d=3$ cams. in general pos. in 3D
- s-connected graph has $p \geq\left\lceil\frac{s k}{2}\right\rceil$ edges for $s \geq 2$, hence $p \geq\left\lceil\frac{3 k}{2}\right\rceil \geq Q(3, k)=\frac{3 k}{2}-2$
- 4-connectivity implies sufficient eqns. for any k when $d=2$
coplanar cams
- since $p \geq\lceil 2 k\rceil \geq Q(2, k)=2 k-3$
- maximal planar tringulated graphs have $p=3 k-6$ and give a solution for $k \geq 3$

cont'd

Linear equations in (30) and (31) can be rewritten to

$$
\mathbf{D t}=\mathbf{0}, \quad \mathbf{t}=\left[\mathbf{t}_{1}^{\top}, \mathbf{t}_{2}^{\top}, \ldots, \mathbf{t}_{k}^{\top}, s_{12}, \ldots, s_{i j}, \ldots\right]^{\top}
$$

assuming measurement errors $\mathbf{D t}=\boldsymbol{\epsilon}$ and $d=3$, we have

$$
\mathbf{t} \in \mathbb{R}^{3 k+p}, \quad \mathbf{D} \in \mathbb{R}^{3 p, 3 k+p} \quad \text { sparse }
$$

and

$$
\mathbf{t}^{*}=\underset{\mathbf{t}, s_{i j}>0}{\arg \min } \mathbf{t}^{\top} \mathbf{D}^{\top} \mathbf{D} \mathbf{t}
$$

- this is a quadratic programming problem (mind the constraints!)

```
z = zeros(3*k+p,1);
t = quadprog(D.'*D, z, diag([zeros(3*k,1); -ones(p,1)]), z);
```

- but check the rank first!

Bundle Adjustment

Goal：Use a good（and expensive）error model and improve the initial estimates of all parameters

Given：

1．set of 3D points $\left\{\mathbf{X}_{i}\right\}_{i=1}^{p}$
2．set of cameras $\left\{\mathbf{P}_{j}\right\}_{j=1}^{c}$
3．fixed tentative projections $\mathbf{m}_{i j}$

Required：

1．corrected 3D points $\left\{\mathbf{X}_{i}^{\prime}\right\}_{i=1}^{p}$
2．corrected cameras $\left\{\mathbf{P}_{j}^{\prime}\right\}_{j=1}^{c}$

Latent：

－for simplicity， \mathbf{X}, \mathbf{m} are considered Cartesian（not homogeneous）
－we have projection error $\mathbf{e}_{i j}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)=\mathbf{x}_{i}-\mathbf{m}_{i}$ per image feature，where $\underline{\mathbf{x}}_{i}=\mathbf{P}_{j} \underline{\mathbf{X}}_{i}$
－for simplicity，we will work with scalar error $e_{i j}=\left\|\mathbf{e}_{i j}\right\|$

Robust Objective Function for Bundle Adjustment

The data model is constructed by marginalization over $v_{i j}$, as in the Robust Matching Model $\rightarrow 116$

$$
p(\{\mathbf{e}\} \mid\{\mathbf{P}, \mathbf{X}\})=\prod_{\text {pts: }:=1}^{p} \prod_{\text {cams: } j=1}^{c}\left(\left(1-P_{0}\right) p_{1}\left(e_{i j} \mid \mathbf{X}_{i}, \mathbf{P}_{j}\right)+P_{0} p_{0}\left(e_{i j} \mid \mathbf{X}_{i}, \mathbf{P}_{j}\right)\right)
$$

marginalized negative log-density is $(\rightarrow 117)$

$$
\begin{aligned}
& \text { ve log-density is }(\rightarrow 117) \\
& -\log p(\{\mathbf{e}\} \mid\{\mathbf{P}, \mathbf{X}\})=\sum_{i} \sum_{j} \underbrace{-\log \left(e^{-\frac{e_{i j}^{2}\left(\mathbf{x}_{i}, \mathbf{P}_{j}\right)}{2 \sigma_{1}^{2}}}+t\right)}_{\rho\left(e_{i j}^{2}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)\right)=\nu_{i j}^{2}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)} \stackrel{\text { def }}{=} \sum_{i} \sum_{j} \nu_{i j}^{2}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)
\end{aligned}
$$

- we can use LM, $e_{i j}$ is the exact projection error function (not Sampson error)
- $\nu_{i j}$ is a 'robust' error fcn.; it is non-robust $\left(\nu_{i j}=e_{i j}\right)$ when $t=0$
- $\rho(\cdot)$ is a 'robustification function' often found in M-estimation
- the $\mathbf{L}_{i j}$ in Levenberg-Marquardt changes to vector

$$
\begin{equation*}
\left(\mathbf{L}_{i j}\right)_{l}=\frac{\partial \nu_{i j}}{\partial \theta_{l}}=\underbrace{\frac{1}{1+t e^{e_{i j}^{2}(\theta) /\left(2 \sigma_{1}^{2}\right)}}}_{\text {small for } e_{i j} \gg \sigma_{1}} \cdot \frac{1}{\nu_{i j}(\theta)} \cdot \frac{1}{4 \sigma_{1}^{2}} \cdot \frac{\partial e_{i j}^{2}(\theta)}{\partial \theta_{l}} \tag{33}
\end{equation*}
$$

but the LM method stays the same as before $\rightarrow 108-109$

- outliers (wrong $v_{i j}$): almost no impact on \mathbf{d}_{s} in normal equations because the red term in (33) scales contributions to both sums down for the particular $i j$

$$
-\sum_{i, j} \mathbf{L}_{i j}^{\top} \nu_{i j}\left(\theta^{s}\right)=\left(\sum_{i, j}^{k} \mathbf{L}_{i j}^{\top} \mathbf{L}_{i j}\right) \mathbf{d}_{s}
$$

-Sparsity in Bundle Adjustment

We have $q=3 p+11 k$ parameters: $\boldsymbol{\theta}=\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{p} ; \mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{k}\right)$
We will use a multi-index $r=1, \ldots, z, z=p \cdot k$. Then

$$
b=A \quad s^{r} \text { correspond to point-cam pairs }(i, j)
$$

$$
\boldsymbol{\theta}^{*}=\arg \min _{\boldsymbol{\theta}} \sum_{r=1}^{z} \nu_{r}^{2}(\boldsymbol{\theta}), \quad \boldsymbol{\theta}^{s+1}:=\boldsymbol{\theta}^{s}+\mathrm{d}_{s}, \quad-\sum_{r=1}^{z} \mathbf{L}_{r}^{\top} \nu_{r}\left(\boldsymbol{\theta}^{s}\right)=\left(\sum_{r=1}^{z} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}+\lambda \operatorname{diag}\left(\mathbf{L}_{r}^{\top} \mathbf{L}_{r}\right)\right) \mathbf{d}_{s}
$$

The block-form of \mathbf{L}_{r} in Levenberg-Marquardt $(\rightarrow 108)$ is zero except in columns i and j :

- "points-first-then-cameras" parameterization scheme

-Choleski Decomposition for B. A.

The most expensive computation in B. A. is solving the normal eqs:

$$
\text { find } \mathrm{x} \text { such that } \quad \mathbf{b} \stackrel{\text { def }}{=}-\sum_{r=1}^{z} \mathbf{L}_{r}^{\top} \nu_{r}\left(\theta^{s}\right)=\left(\sum_{r=1}^{z} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}+\lambda \operatorname{diag}\left(\mathbf{L}_{r}^{\top} \mathbf{L}_{r}\right)\right) \mathbf{x} \stackrel{\text { def }}{=} \mathbf{A x}
$$

- \mathbf{A} is very large
approx. $3 \cdot 10^{4} \times 3 \cdot 10^{4}$ for a small problem of 10000 points and 5 cameras
- \mathbf{A} is sparse and symmetric, \mathbf{A}^{-1} is dense

Choleski: symmetric positive definite matrix \mathbf{A} can be decomposed to $\mathbf{A}=\mathbf{L} \mathbf{L}^{\top}$, where \mathbf{L} is lower triangular. If \mathbf{A} is sparse then \mathbf{L} is sparse, too.

1. decompose $\mathbf{A}=\mathbf{L} \mathbf{L}^{\top}$
$L=\operatorname{chol}(A) ;$ transforms the problem to $\mathbf{L}_{\mathbf{c}}^{\mathbf{L}^{\top} \mathbf{x}}=\mathbf{b}$
2. solve for x in two passes:

$$
\begin{array}{rlr}
\mathbf{L} \mathbf{c}=\mathbf{b} & \mathbf{c}_{i}:=\mathbf{L}_{i i}^{-1}\left(\mathbf{b}_{i}-\sum_{j<i} \mathbf{L}_{i j} \mathbf{c}_{j}\right) & \text { forward substitution, } i=1, \ldots, q \text { (params) } \\
\mathbf{L}^{\top} \mathbf{x}=\mathbf{c} & \mathbf{x}_{i}:=\mathbf{L}_{i i}^{-1}\left(\mathbf{c}_{i}-\sum_{j>i} \mathbf{L}_{j i} \mathbf{x}_{j}\right) & \text { back-substitution }
\end{array}
$$

- Choleski decomposition is fast (does not touch zero blocks)
non-zero elements are $9 p+121 k+66 p k \approx 3.4 \cdot 10^{6}$; ca. $250 \times$ fewer than all elements
- it can be computed on single elements or on entire blocks
- use profile Choleski for sparse A and diagonal pivoting for semi-definite A
see above; [Triggs et al. 1999]
- λ controls the definiteness

Profile Choleski Decomposition is Simple

```
function L = pchol(A)
%
% PCHOL profile Choleski factorization,
% L = PCHOL(A) returns lower-triangular sparse L such that A = L*L'
% for sparse square symmetric positive definite matrix A,
% especially efficient for arrowhead sparse matrices.
% (c) 2010 Radim Sara (sara@cmp.felk.cvut.cz)
[p,q] = size(A);
if p ~= q, error 'Matrix A is not square'; end
L = sparse(q,q);
F = ones(q,1);
for i=1:q
    F(i) = find(A(i,:),1); % 1st non-zero on row i; we are building F gradually
    for j = F(i):i-1
        k = max(F(i),F(j));
        a = A(i,j) - L(i,k:(j-1))*L(j,k:(j-1))';
        L(i,j) = a/L(j,j);
    end
    a = A(i,i) - sum(full(L(i,F(i):(i-1))).^2);
    if a < O, error 'Matrix A is not positive definite'; end
    L(i,i) = sqrt(a);
end
end
```


-Gauge Freedom

1. The external frame is not fixed:

See Projective Reconstruction Theorem $\rightarrow 132$

$$
\underline{\mathbf{m}}_{i j} \simeq \mathbf{P}_{j} \underline{\mathbf{X}}_{i}=\mathbf{P}_{j} \mathbf{H}^{-1} \mathbf{H} \underline{X}_{i}=\mathbf{P}_{j}^{\prime} \underline{\mathbf{X}}_{i}^{\prime}
$$

2. Some representations are not minimal, e.g.

- \mathbf{P} is 12 numbers for 11 parameters
- we may represent \mathbf{P} in decomposed form $\mathbf{K}, \mathbf{R}, \mathbf{t}$
- but \mathbf{R} is 9 numbers representing the 3 parameters of rotation

As a result

- there is no unique solution
- matrix $\sum_{r} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}$ is singular

Solutions

1. fixing the external frame (e.g. a selected camera frame) explicitly or by constraints
2. fixing the scale (e.g. $s_{12}=1$)

3a. either imposing constraints on projective entities

- cameras, e.g. $\mathbf{P}_{3,4}=1$
- points, e.g. $\left(\underline{\mathbf{X}}_{i}\right)_{4}=1$ or $\left\|\underline{\mathbf{X}}_{i}\right\|^{2}=1$
this excludes affine cameras
3b. or using minimal representations
- points in their Euclidean representation \mathbf{X}_{i} but finite points may be an unrealistic model
- rotation matrices can be represented by skew-symmetric matrices $\rightarrow 149$ the 2 nd: can represent points at infinity

Thank You

