3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/tdv/start

http://cmp.felk.cvut.cz mailto:sara@cmp.felk.cvut.cz phone ext. 7203

rev. November 29, 2022

Open Informatics Master's Course

Implementing Simple Linear Constraints (by programmatic elimination)

What for?

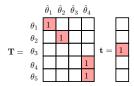
- 1. fixing external frame as in $\theta_i = \mathbf{t}_i$, $s_{kl} = 1$ for some i, k, l
- 2. representing additional knowledge as in $\theta_i = \theta_j$

'trivial gauge'

Introduce reduced parameters $\hat{\theta}$ and replication matrix T:

$$\theta = \mathbf{T} \, \hat{\theta} + \mathbf{t}, \quad \mathbf{T} \in \mathbb{R}^{p, \hat{p}}, \quad \hat{p} \le p$$

then ${\bf L}_r$ in LM changes to ${\bf L}_r \, {\bf T}$ and everything else stays the same ${\rightarrow}108$



these \mathbf{T} , \mathbf{t} represent			
$\theta_1 = \hat{\theta}_1$	no change		
$\theta_2 = \hat{\theta}_2$	no change		
$\theta_3 = t_3$	constancy		
$\theta_4 = \theta_5 = \hat{\theta}_4$	equality		

or filter the init by pseudoinverse $\theta^0 \mapsto \mathbf{T}^{\dagger} \theta^0$

it reduces the problem size

fixed θ

e.g. cameras share calibration matrix K

- T deletes columns of \mathbf{L}_r that correspond to fixed parameters
- consistent initialisation: $\theta^0 = \mathbf{T} \hat{\theta}^0 + \mathbf{t}$

• no need for computing derivatives for θ_i corresponding to all-zero rows of T

- constraining projective entities \rightarrow 149–151
- more complex constraints tend to make normal equations dense
- implementing constraints is safer than explicit renaming of the parameters, gives a flexibility to experiment
- other methods are much more involved, see [Triggs et al. 1999]
- BA resource: http://www.ics.forth.gr/~lourakis/sba/ [Lourakis 2009]

Matrix Exponential: A path to Minimal Parameterizations

• for any square matrix we define

$$\operatorname{expm}(\mathbf{A}) = \sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^{k} \quad \text{f(h) note: } \mathbf{A}^{0} = \mathbf{I}$$

f=e^A

some properties:

6+5

$$\exp(x) = e^{x}, \quad x \in \mathbb{R}, \quad \exp(\mathbf{0} = \mathbf{I}, \quad \exp(-\mathbf{A}) = (\exp(\mathbf{A})^{-1}),$$

$$\exp(a\mathbf{A} + b\mathbf{A}) = \exp(a\mathbf{A}) \exp(b\mathbf{A}), \quad \exp(\mathbf{A} + \mathbf{B}) \neq \exp(\mathbf{A}) \exp(\mathbf{B}) \neq \forall \forall \mathbf{X}$$

$$\exp(\mathbf{A}^{\top}) = (\exp(\mathbf{A})^{\top}) \quad \text{hence if } \mathbf{A} \text{ is skew symmetric then } \exp(\mathbf{A}) \exp(\mathbf{B}) \neq \forall \forall \mathbf{X}$$

$$\exp(\mathbf{A}^{\top}) = (\exp(\mathbf{A})^{\top}) = \exp(\mathbf{A}^{\top}) = \exp(-\mathbf{A}) = (\exp(\mathbf{A}))^{-1}$$

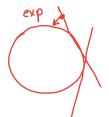
$$\det(\exp(\mathbf{A})) = e^{\operatorname{tr} \mathbf{A}}$$

Some consequences

- traceless matrices $({
 m tr}\,{f A}=0)$ map to unit-determinant matrices \Rightarrow we can represent homogeneous matrices
- skew-symmetric matrices map to orthogonal matrices \Rightarrow we can represent rotations
- matrix exponential provides the exponential map from the powerful Lie group theory

Lie Groups Useful in 3D Vision

group		matrix	represent
special linear	$\mathrm{SL}(3,\mathbb{R})$	real 3×3 , unit determinant ${f H}$	2D homography
special linear	$\mathrm{SL}(4,\mathbb{R})$	real 4×4 , unit determinant H	3D homography
special orthogonal	SO(3)	real 3×3 orthogonal R	3D rotation
special Euclidean	SE(3)	$4 \times 4 \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ 0 & 1 \end{bmatrix}$, $\mathbf{R} \in \mathrm{SO}(3)$, $\mathbf{t} \in \mathbb{R}^3$	3D rigid motion
similarity	Sim(3)	$4 \times 4 \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ 0 & s^{-1} \end{bmatrix}$, $s \in \mathbb{R} \setminus 0$	rigid motion $+$ scale



- Lie group G = topological group that is also a smooth manifold with nice properties
- Lie algebra $\mathfrak{g} =$ vector space associated with a Lie group (tangent space of the manifold)
- group: this is where we need to work
- algebra: this is how to represent group elements with a minimal number of parameters
- Exponential map = map between algebra and its group $\exp: \mathfrak{g} \to G$
- for matrices exp = expm
- in most of the above groups we a have a closed-form formula for the exponential and for its principal inverse
- Jacobians are also readily available for SO(3), SE(3) [Solà 2020]

expu(A) R local optimization update formala Homography

 $\mathbf{H}=\operatorname{expm}\mathbf{Z}$

• $SL(3,\mathbb{R})$ group element

$$\mathbf{H} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \quad \text{s.t.} \quad \det \mathbf{H} = 1$$

• $\mathfrak{sl}(3,\mathbb{R})$ algebra element

$$\mathbf{Z} = \begin{bmatrix} z_{11} & z_{12} & z_{13} \\ z_{21} & z_{22} & z_{23} \\ z_{31} & z_{32} & -(z_{11} + z_{22}) \end{bmatrix}$$

8 parameters

• note that $\operatorname{tr} \mathbf{Z} = 0$

► Rotation in 3D

$$\mathbf{R} = \operatorname{expm} \left[\boldsymbol{\phi} \right]_{\times}, \quad \boldsymbol{\phi} = \left(\phi_1, \, \phi_2, \, \phi_3 \right) = \varphi \, \mathbf{e}_{\varphi}, \quad 0 \le \varphi < \pi, \quad \| \mathbf{e}_{\varphi} \| = 1$$

• SO(3) group element

$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \quad \text{s.t.} \quad \mathbf{R}^{-1} = \mathbf{R}^{\top}$$

• $\mathfrak{so}(3)$ algebra element

$$\begin{bmatrix} \phi \end{bmatrix}_{\times} = \begin{bmatrix} 0 & -\phi_3 & \phi_2 \\ \phi_3 & 0 & -\phi_1 \\ -\phi_2 & \phi_1 & 0 \end{bmatrix}$$

3 parameters

• exponential map in closed form

$$\mathbf{R} = \exp\left[\phi\right]_{\times} = \sum_{n=0}^{\infty} \frac{\left[\phi\right]_{\times}^{n}}{n!} = \overset{\circledast}{\cdots} \overset{1}{=} \mathbf{I} + \frac{\sin\varphi}{\varphi} \left[\phi\right]_{\times} + \frac{1 - \cos\varphi}{\varphi^{2}} \left[\phi\right]_{\times}^{2}$$

• (principal) logarithm

log is a periodic function

$$0 \le \varphi < \pi, \quad \cos \varphi = \frac{1}{2} (\operatorname{tr}(\mathbf{R}) - 1), \quad [\phi]_{\times} = \frac{\varphi}{2 \sin \varphi} (\mathbf{R} - \mathbf{R}^{\top}),$$

- ϕ is rotation axis vector \mathbf{e}_{arphi} scaled by rotation angle arphi in radians
- finite limits for $\varphi \to 0$ exist: $\sin(\varphi)/\varphi \to 1$, $(1 \cos \varphi)/\varphi^2 \to 1/2$

3D Rigid Motion

 $\mathbf{M} = \operatorname{expm} \left[\boldsymbol{\nu} \right]_{\wedge}$

SE(3) group element

 4×4 matrix

- $\mathbf{M} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} \quad \text{s.t.} \quad \mathbf{R} \in \mathrm{SO}(3), \ \mathbf{t} \in \mathbb{R}^3$ • $\mathfrak{sc}(3) \text{ algebra element}$ $\mathbf{V} \in \mathcal{R}^6 \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} \quad [\mathbf{\nu}]_{\wedge} = \begin{bmatrix} [\phi]_{\times} & \mathbf{\rho} \\ \mathbf{0} & 0 \end{bmatrix} \quad \text{s.t.} \quad \mathbf{\phi} \in \mathbb{R}^3, \ \varphi = \|\mathbf{\phi}\| < \pi, \ \mathbf{\rho} \in \mathbb{R}^3$ $4 \times 4 \text{ matrix}$
 - exponential map in closed form

$$\mathbf{R} = \exp\left[\boldsymbol{\phi}\right]_{\times}, \quad \mathbf{t} = \operatorname{dexpm}\left(\left[\boldsymbol{\phi}\right]_{\times}\right)\boldsymbol{\rho}$$
$$\operatorname{dexpm}\left(\left[\boldsymbol{\phi}\right]_{\times}\right) = \sum_{n=0}^{\infty} \frac{\left[\boldsymbol{\phi}\right]_{\times}^{n}}{(n+1)!} = \mathbf{I} + \frac{1 - \cos\varphi}{\varphi^{2}} \left[\boldsymbol{\phi}\right]_{\times} + \frac{\varphi - \sin\varphi}{\varphi^{3}} \left[\boldsymbol{\phi}\right]_{\times}^{2}$$
$$\operatorname{dexpm}^{-1}\left(\left[\boldsymbol{\phi}\right]_{\times}\right) = \mathbf{I} - \frac{1}{2} \left[\boldsymbol{\phi}\right]_{\times} + \frac{1}{\varphi^{2}} \left(1 - \frac{\varphi}{2} \cot\frac{\varphi}{2}\right) \left[\boldsymbol{\phi}\right]_{\times}^{2}$$

- dexpm: differential of the exponential in SO(3)
- (principal) logarithm via a similar trick as in SO(3)
- finite limits exist: $(\varphi \sin \varphi)/\varphi^3 \rightarrow 1/6$
- this form is preferred to $\mathrm{SO}(3) \times \mathbb{R}^3$

► Minimal Representations for Other Entities

• fundamental matrix via $\mathrm{SO}(3)\times\mathrm{SO}(3)\times\mathbb{R}$

$$\mathbf{F} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}, \quad \mathbf{D} = \operatorname{diag}(1, d^2, 0), \quad \mathbf{U}, \mathbf{V} \in \operatorname{SO}(3), \quad 3 + 1 + 3 = 7 \text{ DOF}$$

• essential matrix via $SO(3) \times \mathbb{R}^3$

$$\mathbf{E} = [-\mathbf{t}]_{\times} \mathbf{R}, \quad \mathbf{R} \in SO(3), \quad \mathbf{t} \in \mathbb{R}^3, \ \|\mathbf{t}\| = 1, \qquad 3+2 = 5 \text{ DOF}$$

• camera pose via $SO(3) \times \mathbb{R}^3$ or SE(3)

$$\mathbf{P} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} = \begin{bmatrix} \mathbf{K} & \mathbf{0} \end{bmatrix} \mathbf{M}, \qquad 5+3+3 = 11 \text{ DOF}$$

- Sim(3) useful for SfM without scale
 - closed-form formulae still exist but they are a bit too messy [Eade(2017)]
- a (bit too brief) intro to Lie groups in 3D vision/robotics and SW:
 - J. Solà, J. Deray, and D. Atchuthan. A micro Lie theory for state estimation in robotics. arXiv:1812.01537v7 [cs.RO], August 2020.
 - E. Eade. Lie groups for 2D and 3D transformations. On-line at http://www.ethaneade.org/, May 2017.

Module VII

Stereovision

Introduction
Epipolar Rectification
Binocular Disparity and Matching Table
Image Similarity
Marroquin's Winner Take All Algorithm
Maximum Likelihood Matching
Uniqueness and Ordering as Occlusion Models

mostly covered by

Šára, R. How To Teach Stereoscopic Vision. Proc. ELMAR 2010

referenced as [SP]

additional references

- C. Geyer and K. Daniilidis. Conformal rectification of omnidirectional stereo pairs. In *Proc Computer Vision and Pattern Recognition Workshop*, p. 73, 2003.
- J. Gluckman and S. K. Nayar. Rectifying transformations that minimize resampling effects. In Proc IEEE CS Conf on Computer Vision and Pattern Recognition, vol. 1:111–117. 2001.
- M. Pollefeys, R. Koch, and L. V. Gool. A simple and efficient rectification method for general motion. In *Proc Int Conf on Computer Vision*, vol. 1:496–501, 1999.

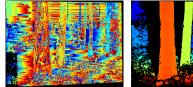
Stereovision: What Are The Relative Distances?

 $0(n^3)$

The success of a model-free stereo matching algorithm is unlikely:

WTA Matching:

for every left-image pixel find the most similar right-image pixel along the corresponding epipolar line [Marroquin 83]



disparity map from WTA

a good disparity map

- monocular vision already gives a rough 3D sketch because we understand the scene
- pixelwise independent matching without any understanding is difficult
- matching can benefit from a geometric simplification of the problem

► Linear Epipolar Rectification for Easier Correspondence Search

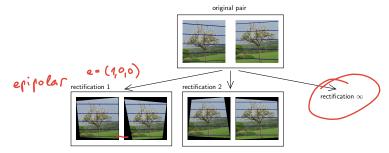
Obs:

- if we map epipoles to infinity, epipolar lines become parallel
- we then rotate them to become horizontal
- we then scale the images to make corresponding epipolar lines colinear
- this can be achieved by a pair of (non-unique) homographies applied to the images

Problem: Given fundamental matrix \mathbf{F} or camera matrices \mathbf{P}_1 , \mathbf{P}_2 , compute a pair of homographies that maps epipolar lines to horizontal with the same row coordinate.

Procedure:

- 1. find a pair of rectification homographies \mathbf{H}_1 and $\mathbf{H}_2.$
- 2. warp images using H_1 and H_2 and transform the fundamental matrix $\mathbf{F} \mapsto \mathbf{H}_2^{-\top} \mathbf{F} \mathbf{H}_1^{-1}$ or the cameras $\mathbf{P}_1 \mapsto \mathbf{H}_1 \mathbf{P}_1$, $\mathbf{P}_2 \mapsto \mathbf{H}_2 \mathbf{P}_2$.



► Rectification Homographies

Assumption: Cameras $(\mathbf{P}_1, \mathbf{P}_2)$ are rectified by a homography pair $(\mathbf{H}_1, \mathbf{H}_2)$:

$$\mathbf{P}_{i}^{*} = \mathbf{H}_{i}\mathbf{P}_{i} = \mathbf{H}_{i}\mathbf{K}_{i}\mathbf{R}_{i}\begin{bmatrix}\mathbf{I} & -\mathbf{C}_{i}\end{bmatrix}, \quad i = 1, 2$$

$$v \bigvee \begin{array}{c} \mathbf{m}_{1}^{*} = (u_{1}^{*}, v^{*}) \\ \mathbf{m}_{1}^{*} = (u_{1}^{*}, v^{*}) \\ \mathbf{l}_{1}^{*} & \mathbf{l}_{2}^{*} = (u_{2}^{*}, v^{*}) \\ \mathbf{l}_{2}^{*} & \mathbf{l}_{2}^{*} \end{array}$$
• the rectified location difference $d = u_{1}^{*} - u_{2}^{*}$ is called disparity
corresponding epipolar lines must be:
$$\mathbf{s}$$
1. parallel to image rows \Rightarrow epipoles become $e_{1}^{*} = e_{2}^{*} = (1, 0, 0)$
2. equivalent $l_{2}^{*} = l_{1}^{*}$: $\mathbf{l}_{1}^{*} \simeq \mathbf{e}_{1}^{*} \times \mathbf{m}_{1} = [\mathbf{e}_{1}^{*}]_{\times} \mathbf{m}_{1} \simeq \mathbf{l}_{2}^{*} \simeq \mathbf{F}^{*} \mathbf{m}_{1} \Rightarrow \mathbf{F}^{*} = [\mathbf{e}_{1}^{*}]_{\times}$
• therefore the canonical fundamental matrix is
$$\mathbf{F}^{*} \simeq \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

A two-step rectification procedure

- 1. find some pair of primitive rectification homographies $\hat{H}_1,\,\hat{H}_2$
- 2. upgrade to a pair of optimal rectification homographies while preserving \mathbf{F}^*

► Geometric Interpretation of Linear Rectification

What pair of physical cameras is compatible with $\mathbf{F}^*?$

- we know that $\mathbf{F} = (\mathbf{Q}_1 \mathbf{Q}_2^{-1})^\top [\mathbf{\underline{e}}_1]_{\times}$
- we choose $\mathbf{Q}_1^*=\mathbf{K}_1^*,~~\mathbf{Q}_2^*=\mathbf{K}_2^*\mathbf{R}^*;$ then

$$\mathbf{F}^* \simeq (\mathbf{Q}_1^* \mathbf{Q}_2^{*-1})^\top [\underline{\mathbf{e}}_1^*]_{\times} \stackrel{!}{\simeq} (\mathbf{K}_1^* \mathbf{R}^{*\top} \mathbf{K}_2^{*-1})^\top \mathbf{F}^*$$

• we look for \mathbf{R}^* , \mathbf{K}_1^* , \mathbf{K}_2^* compatible with

 $(\mathbf{K}_1^* \mathbf{R}^{*\top} \mathbf{K}_2^{*-1})^\top \mathbf{F}^* = \lambda \mathbf{F}^*, \qquad \mathbf{R}^* \mathbf{R}^{*\top} = \mathbf{I}, \qquad \mathbf{K}_1^*, \mathbf{K}_2^* \text{ upper triangular}$

- we also want \mathbf{b}^* from $\underline{\mathbf{e}}_1^* \simeq \mathbf{P}_1^* \underline{\mathbf{C}}_2^* = \mathbf{K}_1^* \mathbf{b}^*$ • result: (wussand cond.) $\mathbf{R}^* = \mathbf{I}, \quad \mathbf{b}^* = \begin{bmatrix} b \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{K}_1^* = \begin{bmatrix} k_{11} & k_{12} & k_{13} \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{K}_2^* = \begin{bmatrix} k_{21} & k_{22} & k_{23} \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix}$ (34)
- rectified cameras are in canonical relative pose
- rectified calibration matrices can differ in the first row only
- when K₁^{*} = K₂^{*} then the rectified pair is called the <u>standard stereo pair</u> and the homographies <u>standard rectification</u> homographies
- standard rectification homographies: points at infinity have zero disparity

$$\mathbf{P}_{i}^{*} \underline{\mathbf{X}}_{\infty} = \mathbf{K} \begin{bmatrix} \mathbf{I} & -\mathbf{C}_{i} \end{bmatrix} \underline{\mathbf{X}}_{\infty} = \mathbf{K} \mathbf{X}_{\infty} \qquad i = 1, 2$$

• this does not mean that the images are not distorted after rectification

not rotated, canonical baseline

→79

► Primitive Rectification

Goal: Given fundamental matrix \mathbf{F} , derive some easy-to-obtain rectification homographies \mathbf{H}_1 , \mathbf{H}_2

- 1. Let the SVD of \mathbf{F} be $\mathbf{U}\mathbf{D}\mathbf{V}^{\top} = \mathbf{F}$, where $\mathbf{D} = \operatorname{diag}(1, d^2, 0), \quad 1 \ge d^2 > 0$
- 2. Write **D** as $\mathbf{D} = \mathbf{A}^{\top} \mathbf{F}^* \mathbf{B}$ for some regular **A**, **B**. For instance

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -d & 0 \\ 1 & 0 & 0 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & d & 0 \end{bmatrix}$$

3. Then

$$\mathbf{F} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top} = \underbrace{\mathbf{U}\mathbf{A}^{\top}}_{\hat{\mathbf{H}}_{2}^{\top}} \mathbf{F}^{*} \underbrace{\mathbf{B}\mathbf{V}^{\top}}_{\hat{\mathbf{H}}_{1}} = \hat{\mathbf{H}}_{2}^{\top} \mathbf{F}^{*} \hat{\mathbf{H}}_{1} \qquad \hat{\mathbf{H}}_{1}, \, \hat{\mathbf{H}}_{2} \text{ orthogonal}$$

and the primitive rectification homographies are

$$\hat{\mathbf{H}}_2 = \mathbf{A}\mathbf{U}^{\top}, \qquad \hat{\mathbf{H}}_1 = \mathbf{B}\mathbf{V}^{\top}$$

 \circledast P1; 1pt: derive some other admissible A, B

- Hence: Rectification homographies do exist $\rightarrow 155$
- there are other primitive rectification homographies, these suggested are just easy to obtain

(\mathbf{F}^* is given $\rightarrow 155$)

► The Set of All Rectification Homographies

 $\begin{array}{l} \mbox{Proposition 1} & \mbox{Homographies } \mathbf{A}_1 \mbox{ and } \mathbf{A}_2 \mbox{ are } \underline{rectification-preserving} \mbox{ if the images stay rectified, i.e. if } \\ \mbox{ } \mathbf{A}_2^{-\top} \mbox{ } \mathbf{F}^* \mbox{ } \mathbf{A}_1^{-1} \simeq \mbox{ } \mathbf{F}^*, \mbox{ which gives } \\ \end{array}$

$$\mathbf{A}_{1} = \begin{bmatrix} l_{1} & l_{2} & l_{3} \\ 0 & s_{v} & t_{v} \\ 0 & q & 1 \end{bmatrix}, \qquad \mathbf{A}_{2} = \begin{bmatrix} r_{1} & r_{2} & r_{3} \\ 0 & s_{v} & t_{v} \\ 0 & q & 1 \end{bmatrix}, \qquad v \checkmark$$
(35)

where $s_v \neq 0$, t_v , $l_1 \neq 0$, l_2 , l_3 , $r_1 \neq 0$, r_2 , r_3 , q are 9 free parameters.

general	transformation		standard
l_1 , r_1	horizontal scales		$l_1 = r_1$
l_2 , r_2	horizontal shears		$l_2 = r_2$
l_3 , r_3	horizontal shifts		$l_{3} = r_{3}$
q	common special projective	\Box	
s_v	common vertical scale		
t_v	common vertical shift		
9 DoF			9-3=6DoF

- ullet q is due to a rotation about the baseline
- s_v changes the focal length

proof: find a rotation G that brings K to upper triangular form via RQ decomposition: $A_1K_1^* = \hat{K}_1G$ and $A_2K_2^* = \hat{K}_2G$

The Rectification Group

Corollary for Proposition 1 Let $\bar{\mathbf{H}}_1$ and $\bar{\mathbf{H}}_2$ be (primitive or other) rectification homographies. Then $\mathbf{H}_1 = \mathbf{A}_1 \bar{\mathbf{H}}_1$, $\mathbf{H}_2 = \mathbf{A}_2 \bar{\mathbf{H}}_2$ are also rectification homographies, where \mathbf{A}_1 , \mathbf{A}_2 are as in (35).

Proposition 2 Pairs of rectification-preserving homographies $(\mathbf{A}_1, \mathbf{A}_2)$ form a group with group operation $(\mathbf{A}'_1, \mathbf{A}'_2) \circ (\mathbf{A}_1, \mathbf{A}_2) = (\mathbf{A}'_1 \mathbf{A}_1, \mathbf{A}'_2 \mathbf{A}_2).$

Proof:

- closure by Proposition 1
- associativity by matrix multiplication
- identity belongs to the set
- inverse element belongs to the set by $\mathbf{A}_2^\top \mathbf{F}^* \mathbf{A}_1 \simeq \mathbf{F}^* \Leftrightarrow \mathbf{F}^* \simeq \mathbf{A}_2^{-\top} \mathbf{F}^* \mathbf{A}_1^{-1}$

▶ Primitive Rectification Suffices for Calibrated Cameras

Obs: calibrated cameras: $d = 1 \Rightarrow \hat{\mathbf{H}}_1$, $\hat{\mathbf{H}}_2$ (\rightarrow 157) are orthonormal

- 1. determine primitive rectification homographies $(\hat{\mathbf{H}}_1, \hat{\mathbf{H}}_2)$ from the essential matrix
- 2. choose a suitable common calibration matrix \mathbf{K} , e.g. from \mathbf{K}_1 , \mathbf{K}_2 :

$$\mathbf{K} = \begin{bmatrix} f & 0 & u_0 \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix}, \quad f = \frac{1}{2}(f^1 + f^2), \quad u_0 = \frac{1}{2}(u_0^1 + u_0^2), \quad \text{etc.}$$

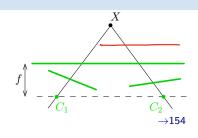
3. the final rectification homographies applied as $\mathbf{P}_i\mapsto \mathbf{H}_i\,\mathbf{P}_i$ are

$$\mathbf{H}_1 = \mathbf{K} \mathbf{\hat{H}}_1 \mathbf{K}_1^{-1}, \quad \mathbf{H}_2 = \mathbf{K} \mathbf{\hat{H}}_2 \mathbf{K}_2^{-1}$$

- we got a standard stereo pair (\rightarrow 156) and non-negative disparity: let $\mathbf{K}_{i}^{-1}\mathbf{P}_{i} = \mathbf{R}_{i} \begin{bmatrix} \mathbf{I} & -\mathbf{C}_{i} \end{bmatrix}$, i = 1, 2 note we started from \mathbf{E} , not \mathbf{F} $\mathbf{H}_{1}\mathbf{P}_{1} = \mathbf{K}\hat{\mathbf{H}}_{1}\mathbf{K}_{1}^{-1}\mathbf{P}_{1} = \mathbf{K}\underbrace{\mathbf{B}\mathbf{V}^{\top}\mathbf{R}_{1}}_{\mathbf{R}^{*}}\begin{bmatrix} \mathbf{I} & -\mathbf{C}_{1} \end{bmatrix} = \mathbf{K}\mathbf{R}^{*} \begin{bmatrix} \mathbf{I} & -\mathbf{C}_{1} \end{bmatrix}$ $\mathbf{H}_{2}\mathbf{P}_{2} = \mathbf{K}\hat{\mathbf{H}}_{2}\mathbf{K}_{2}^{-1}\mathbf{P}_{2} = \mathbf{K}\underbrace{\mathbf{A}\mathbf{U}^{\top}\mathbf{R}_{2}}_{\mathbf{R}^{*}}\begin{bmatrix} \mathbf{I} & -\mathbf{C}_{2} \end{bmatrix} = \mathbf{K}\mathbf{R}^{*} \begin{bmatrix} \mathbf{I} & -\mathbf{C}_{2} \end{bmatrix}$
- one can prove that $\mathbf{BV}^{\top}\mathbf{R}_1 = \mathbf{AU}^{\top}\mathbf{R}_2$ with the help of essential matrix decomposition (13)
- Note that points at infinity project by \mathbf{KR}^* in both cameras \Rightarrow they have zero disparity (\rightarrow 165), hence...

Summary & Remarks: Linear Rectification

... It follows: Standard rectification homographies reproject onto a common image plane parallel to the baseline



- rectification is done with a pair of homographies (one per image)
 - $\Rightarrow\,$ projection centers of rectified cameras are equal to the original ones
 - binocular rectification: a 9-parameter family of rectification homographies
 - trinocular rectification: has 9 or 6 free parameters (depending on additional constrains)
 - in general, linear rectification is not possible for more than three cameras

rectified cameras are in canonical orientation

 \Rightarrow rectified image projection planes are coplanar

equal rectified calibration matrices give standard rectification

- \Rightarrow rectified image projection planes are equal
- primitive rectification is already standard in calibrated cameras
- known ${f F}$ used alone does not allow standardization of rectification homographies
- for that we need either of these:
 - 1. projection matrices, or calibrated cameras, or
 - 2. a few points at infinity calibrating k_{1i} , k_{2i} , i = 1, 2, 3 in (34)

 $\rightarrow 156$

 $\rightarrow 156$

 $\rightarrow 160$

Optimal and Non-linear Rectification

Optimal choice for the free parameters

• by minimization of residual image distortion, eg. [Gluckman & Nayar 2001]

$$\mathbf{A}_{i}^{*} = \arg\min_{\mathbf{A}_{i}} \iint_{\Omega} \left(\det J((A_{i} \circ H_{i})(\mathbf{x})) - 1 \right)^{2} d\mathbf{x}, \quad i = 1, 2$$

- by minimization of image information loss [Matoušek, ICIG 2004]
- non-linear rectification non-parametric: [Pollefeys et al. 1999] analytic: [Geyer & Daniilidis 2003]

suitable for forward motion

forward egomotion

rectified images, Pollefeys' method

Thank You

