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How Difficult Is Stereo?

Centrum för teknikstudier at Malmö Högskola, Sweden The Vyšehrad Fortress, Prague

• top: easy interpretation from even a single image
• bottom left: we have no help from image interpretation
• bottom right: ambiguous interpretation due to a combination of missing texture and occlusion
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A Summary of Our Observations and an Outlook

1. simple matching algorithms do not work
• the success of a model-free stereo matching is unlikely →153
• without scene recognition or use high-level constraints the problem seems difficult

2. stereopsis requires image interpretation in sufficiently complex scenes or another-modality measurement

we have a tradeoff: model strength ↔ universality

Outlook:

1. represent the occlusion constraint: correspondences are not independent due to occlusions

• disparity in rectified images
• uniqueness as an occlusion constraint

2. represent piecewise continuity the weakest of interpretations; piecewise: object boundaries

• ordering as a weak continuity model

3. use a consistent framework
• finding the most probable solution (MAP)
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▶Binocular Disparity in a Standard Stereo Pair

top view in xz plane
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• Assumptions: single image line, standard camera pair
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b

2
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• eliminate α1, α2 and obtain:

X = (x, y, z) from disparity d = u1 − u2:
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f , d, u, v in pixels, b, x, y, z in meters

Observations

• constant disparity surface is a frontoparallel plane

• distant points have small disparity

• relative error in z is large for small disparity
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• increasing the baseline or the focal length increases disparity and
reduces the error
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Structural Ambiguity in Stereovision

• suppose we can recognize local matches independently but have no scene model
• lack of an occlusion model
• lack of a continuity model

⇒ structural ambiguity in the presence of repetitions (or lack
of texture)

left image right image
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▶Understanding Basic Occlusion Types

surface pt.
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• surface point at the intersection of rays l and r1 occludes a world point at the intersection (l, r3) and implies the world
point (l, r2) is transparent, therefore

(l, r3) and (l, r2) are excluded by (l, r1)

• in half-occlusion, every 3D point such as X1 or X2 is excluded by a binocularly visible surface point such as Y1, Y2, Y3

⇒ decisions on correspondences are not independent

• in mutual occlusion this is no longer the case: any X in the yellow zone above is not excluded
⇒ decisions inside the zone are independent on the rest
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▶Matching Table

Based on scene opacity and the observation on mutual exclusion we expect each pixel to match at most once.

scene

2 43

C1 C2

π1 π2

4321 1

�1
�2

1

1 2 3 4 5

5

4

3

2

rays in epipolar plane matching table T

matching table

• rows and columns represent optical rays

• nodes: possible correspondence pairs

• full nodes: matches

• numerical values associated with nodes: descriptor similarities see next
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▶Constructing An Image Similarity Cost

• let pi = (l, r) and L(l), R(r) be (left, right) image descriptors (vectors) constructed from local image neighborhood
windows

in matching table T :

�2l
r

�1
‘block’ in the left image 7→ ‘a set of random-variable samples’:L(l)l

• a simple block (dis-)similarity is SAD(l, r) = ∥L(l)−R(r)∥1 L1 metric (sum of absolute differences; smaller is better)

• a scaled-descriptor (dis-)similarity is sim(l, r) =
∥L(l)−R(r)∥2

σ2
I (l, r)

smaller is better

• σ2
I – the difference scale; a suitable (plug-in) estimate is 1

2

[
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)
+ var

(
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)]
, giving

sim(l, r) = 1−
2 cov
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L(l),R(r)

)
var

(
L(l)

)
+ var

(
R(r)

)︸ ︷︷ ︸
ρ
(
L(l),R(r)

)
var(·), cov(·) is sample (co-)variance,
not invariant to scale difference

(36)

• ρ – MNCC – Moravec’s Normalized Cross-Correlation similarity bigger is better [Moravec 1977]

ρ2 ∈ [0, 1], sign ρ ∼ ‘phase’

• another successful (dis-)similarity is the Hamming Distance over the Census Transform related to local binary patterns
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How A Scene Looks in The Filled-In Matching Table

object left image right image

5× 5 window 11× 11 window 3× 3 window

a good tradeoff occlusion artefacts undiscriminable

• MNCC ρ used
(α = 1.5, β = 1) →176

• high-similarity structures correspond to
scene objects

Things to notice:

constant disparity

• a diagonal in matching table

• zero disparity is the main diagonal
assuming standard stereopair

depth discontinuity

• horizontal or vertical jump in matching table

large image window

• similarity values have better discriminability

• worse occlusion localization

repeated texture

• horizontal and vertical block repetition
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Image Point Descriptors And Their Similarity

Descriptors: Image points are tagged by their (viewpoint-invariant) physical properties:

• texture window [Moravec 77]
• a descriptor like DAISY [Tola et al. 2010]
• learned descriptors
• reflectance profile under a moving illuminant
• photometric ratios [Wolff & Angelopoulou 93-94]
• dual photometric stereo [Ikeuchi 87]
• polarization signature
• . . .

• similar points are more likely to match
• image similarity values for all ‘match candidates’ give the 3D matching table also called: ‘disparity volume’

click for video
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▶Marroquin’s Winner Take All (WTA) Matching Algorithm

Alg: Per left-image pixel: The most SAD-similar pixel along the right epipolar line →169

1. select disparity range this is a critical weak point

2. represent the matching table diagonals in a compact form
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3. use an ‘image sliding & cost aggregation algorithm’

image shifted by d = 1 pixel
−

∑
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4. take the maximum over disparities d
5. threshold results by maximal allowed SAD dissimilarity
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A Matlab Code for WTA

function dmap = marroquin(iml, imr, disparityRange)
% iml, imr - rectified gray-scale images
% disparityRange - non-negative disparity range

% (c) Radim Sara (sara@cmp.felk.cvut.cz) FEE CTU Prague, 10 Dec 12

thr = 20; % bad match rejection threshold
r = 2;
winsize = 2*r+[1 1]; % 5x5 window (neighborhood) for r=2
N = boxing(ones(size(iml)), winsize); % the size of each local patch is

% N = (2r+1)^2 except for boundary pixels

% --- compute dissimilarity per pixel and disparity --->

for d = 0:disparityRange % cycle over all disparities
slice = abs(imr(:,1:end-d) - iml(:,d+1:end)); % pixelwise dissimilarity (unscaled SAD)
V(:,d+1:end,d+1) = boxing(slice, winsize)./N; % window aggregation

end

% --- collect winners, threshold, output disparity map --->

[cmap,dmap] = min(V,[],3); % collect winners and their dissimilarities
dmap(cmap > thr) = NaN; % mask-out high dissimilarity pixels

end % of marroquin

function c = boxing(im, wsz)
% if the mex is not found, run this slow version:
c = conv2(ones(1,wsz(1)), ones(wsz(2),1), im, ’same’);

end % of boxing
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WTA: Some Results

thr = 20 thr = 10

• results are fairly bad
• false matches in textureless image regions and on repetitive structures (book shelf)
• a more restrictive threshold (thr = 10) does not work as expected
• we searched the true disparity range, results get worse if the range is set wider
• chief failure reasons:

• unnormalized image dissimilarity does not work well
• no occlusion model (it just ignores the occlusion structure we have discussed →167)
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Thank You
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m
u

tu
a

lly
−

o
c
c
lu

d
e

d

h
a

lf
−

o
c
c
lu

d
e

d

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 6–Dec–2022
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