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▶Optical Ray

Optical ray: Spatial line that projects to a single image point.

1. Consider the following spatial line (world frame)
d ∈ R3 line direction vector, ∥d∥ = 1, λ ∈ R, Cartesian representation

X(λ) = C+ λd

2. The projection of the (finite) point X(λ) is

m≃
[
Q q

] [X(λ)
1

]
= Q(C+ λd) + q = λQd =

= λ
[
Q q

] [d
0

]
. . . which is also the image of a point at infinity in P3

• optical ray line corresponding to image point m is the set

X(µ) = C+ µQ−1m, µ ∈ R (µ = 1/λ)

X(λ)

C
π

m

d

• optical ray direction may be represented by a point at infinity (d, 0) in P3

• optical ray is expressed in world coordinate frame
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▶Optical Axis

Optical axis: Optical ray that is perpendicular to image plane π

1. points X on a given line N parallel to π project to a point at infinity
(u, v, 0) in π: uv

0

 ≃ PX=

q⊤
1 q14

q⊤
2 q24

q⊤
3 q34

[
X
1

]
2. therefore the set of points X is parallel to π iff

q⊤
3 X+ q34 = 0

3. this is a plane equation with ±q3 as the normal vector

N

C

o

π

X

4. optical axis direction: substitution P 7→ λP must not change the direction

5. we select (assuming det(R) > 0)

o = det(Q)q3

if P 7→ λP then det(Q) 7→ λ3 det(Q) and q3 7→ λq3 [H&Z, p. 161]

• the axis is expressed in world coordinate frame
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▶Principal Point

Principal point: The intersection of image plane and the optical axis

1. as we saw, q3 is the directional vector of optical axis

2. we take point at infinity on the optical axis that must project to the
principal point m0

3. then

m0 ≃
[
Q q

] [q3

0

]
= Qq3

m0�q3 C
principal point: m0 ≃ Qq3

• principal point is also the center of radial distortion
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▶Optical Plane

A spatial plane with normal p containing the projection center C and a given image line n.

� d0 pCm0 n mX d�
optical ray given by m d ≃ Q−1m

optical ray given by m′ d′ ≃ Q−1m′

p ≃ d× d′ = (Q−1m)× (Q−1m′) = Q⊤(m×m′) = Q⊤n

• note the way Q factors out!

hence, 0 = p⊤(X−C) = n⊤ Q(X−C)︸ ︷︷ ︸
→30

= n⊤PX= (P⊤n)⊤X for every X in plane ρ

optical plane is given by n: ρ≃ P⊤n ρ1 x+ ρ2 y + ρ3 z + ρ4 = 0
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Cross-Check: Optical Ray as Optical Plane Intersection

m
�n0n d p0

Cp
optical plane normal given by n p = Q⊤n

optical plane normal given by n′ p′ = Q⊤n′

d = p× p′ = (Q⊤n)× (Q⊤n′) = Q−1(n× n′) = Q−1m
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▶Summary: Projection Center; Optical Ray, Axis, Plane

General (finite) camera

P =
[
Q q

]
=

q
⊤
1 q14

q⊤
2 q24

q⊤
3 q34

 = K
[
R t

]
= KR

[
I −C

]

C≃ rnull(P), C = −Q−1q projection center (world coords.) →35

d = Q−1 m optical ray direction (world coords.) →36

o = det(Q)q3 outward optical axis (world coords.) →37

m0 ≃ Qq3 principal point (in image plane) →38

ρ= P⊤ n optical plane (world coords.) →39

K =

a f −a f cot θ u0

0 f/ sin θ v0
0 0 1

 camera (calibration) matrix (f , u0, v0 in pixels) →31

R camera rotation matrix (cam coords.) →30

t camera translation vector (cam coords.) →30
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What Can We Do with An ‘Uncalibrated’ Perspective Camera?

How far is the engine from a given point on the tracks?

distance between sleepers (ties) 0.806m but we cannot count them, the image resolution is too low

We will review some life-saving theory. . .
. . . and build a bit of geometric intuition. . .

In fact

• ‘uncalibrated’ = the image contains a ‘calibrating object’ that suffices for the task at hand
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▶Vanishing Point

Vanishing point (V.P.): The limit m∞ of the projection of a point X(λ) that moves along a space line
X(λ) = X0 + λd infinitely in one direction. the image of the point at infinity on the line

X0X0 + �d d Cd m m1
�

m∞ ≃ lim
λ→±∞

P

[
X0 + λd

1

]
= · · · ≃ Qd

⊛ P1; 1pt: Prove (use Cartesian

coordinates and L’Hôpital’s rule)

• the V.P. of a spatial line with directional vector d is m∞ ≃ Qd

• V.P. is independent on line position X0, it depends on its directional vector only

• all parallel (world) lines share the same (image) V.P., including the optical ray defined by m∞
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Some Vanishing Point “Applications”

where is the sun? what is the wind direction? fly above the lane,
(must have video) at constant altitude!
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▶Vanishing Line

Vanishing line (V.L.): The set of vanishing points of all lines in a plane the image of the line at infinity in the plane

and in all parallel planes (!)v1 n | plane normal

m | line orientation vetor
v2
• any box with parallel edges

• top (blue) and bottom (black) box planes are parallel,
hence they share V.L. n

• V.L. n corresponds to spatial plane of normal vector p = Q⊤n
because this is the normal vector of a parallel optical plane (!) →39

• a spatial plane of normal vector p has a V.L. represented by n= Q−⊤p.
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▶Cross Ratio

Four distinct collinear spatial points R,S, T, U define cross-ratio

[RSTU ] =
|
−→
RT |
|
−→
SR|

|
−→
US|
|
−→
TU |

R S T U

a mnemonic (∞)

• |−→RT | – signed distance from R to T in the arrow direction

• each point X is once in numerator and once in denominator

• if X is 1st in a numerator term, it is 2nd in a denominator term

• there are six cross-ratios from four points:

[SRUT ] = [RSTU], [RSUT ] =
1

[RSTU]
, [RTSU] = 1 − [RSTU], · · · �

v s tn
u

r p

S

R

N

C

U

T

v /∈ n

Obs: [RSTU ] =

∣∣r t v
∣∣∣∣s r v
∣∣ ·

∣∣u s v
∣∣∣∣t u v
∣∣ , ∣∣r t v

∣∣ = det
[
r t v

]
= (r× t)⊤v mixed product (1)

Corollaries:
• cross ratio is invariant under homographies x′ ≃ Hx proof: plug Hx in (1): (H−⊤(r× t))⊤Hv

• cross ratio is invariant under perspective projection: [RSTU ] = [ r s t u ]

• 4 collinear points: any perspective camera will “see” the same cross-ratio of their images
• we measure the same cross-ratio in image as on the world line
• one of the points R, S, T , U may be at infinity (we take the limit, in effect ∞

∞ = 1)
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▶1D Projective Coordinates

The 1-D projective coordinate of a point P is defined by the following cross-ratio:

[P ] = [P0 P1 P P∞] = [p0 p1 p p∞] =
|−−→p0 p|
|−−→p1 p0|

|−−−→p∞ p1|
|−−→p p∞|

= [p]

naming convention:

P0 – the origin [P0] = 0

P1 – the unit point [P1] = 1

P∞ – the supporting point [P∞] = ±∞

[P ] = [p]

[P ] is equal to Euclidean coordinate along N

[p] is its measurement in the image plane

if the sign is not of interest, any cross-ratio containing |p0 p| does the job

p∞p0 p1 p

p0

p1

p∞

n′n

p

N ′‖N in 3D

Applications
• Given the image of a 3D line N , the origin, the unit point, and the vanishing point, then the Euclidean

coordinate of any point P ∈ N can be determined →48

• Finding V.P. of a line through a regular object →49
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Application: Counting Steps

p∞
p

p0

p1

su
p
p
o
rtin

g
 lin

e

• Namesti Miru underground station in Prague

p

p∞

detail around the vanishing point

Result: [P ] = 214 steps (correct answer is 216 steps) 4Mpx camera
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Application: Finding the Horizon from Repetitions

p

p∞

p0

p1

P1

P

P0

in 3D: |P0P | = 2|P0P1| then [H&Z, p. 218]

[P0P1PP∞] =
|P0P |
|P1P0|

= 2 ⇒ x∞ =
x0 (2x− x1)− xx1

x+ x0 − 2x1

• x – 1D coordinate along the yellow line, positive in the arrow direction
• could be applied to counting steps (→48) if there was no supporting line

⊛ P1; 1pt: How high is the camera above the floor?
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Thank You
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p

p∞

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 4–Oct–2022
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