## 3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203
rev. October 4, 2022


Open Informatics Master's Course

## - Optical Axis

Optical axis：Optical ray that is perpendicular to image plane $\pi$
1．points $X$ on a given line $N$ parallel to $\pi$ project to a point at infinity $(u, v, 0)$ in $\pi$ ：

$$
\left[\begin{array}{l}
u \\
v \\
0
\end{array}\right] \simeq \mathbf{P} \underline{\mathbf{X}}=\left[\begin{array}{ll}
\mathbf{q}_{1}^{\top} & q_{14} \\
\mathbf{q}_{2}^{\top} & q_{24} \\
\mathbf{q}_{3}^{\top} & q_{34}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]
$$

2．therefore the set of points $X$ is parallel to $\pi$ iff

$$
\mathbf{q}_{3}^{\top} \mathbf{X}+q_{34}=0
$$

3．this is a plane equation with $\pm \mathbf{q}_{3}$ as the normal vector


4．optical axis direction：substitution $\mathbf{P} \mapsto \lambda \mathbf{P}$ must not change the direction
5．we select（assuming $\operatorname{det}(\mathbf{R})>0$ ）

$$
\mathbf{o}=\operatorname{det}(\mathbf{Q}) \mathbf{q}_{3}
$$

if $\mathbf{P} \mapsto \lambda \mathbf{P}$ then $\operatorname{det}(\mathbf{Q}) \mapsto \lambda^{3} \operatorname{det}(\mathbf{Q}) \quad$ and $\quad \mathbf{q}_{3} \mapsto \lambda \mathbf{q}_{3}$
－the axis is expressed in world coordinate frame

## Principal Point

Principal point: The intersection of image plane and the optical axis

1. as we saw, $\mathbf{q}_{3}$ is the directional vector of optical axis
2. we take point at infinity on the optical axis that must project to the principal point $m_{0}$
3. then

$$
\underline{\mathbf{m}}_{0} \simeq\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{c}
\mathbf{q}_{3} \\
0
\end{array}\right]=\mathbf{Q} \mathbf{q}_{3}
$$

$$
\text { principal point: } \quad \underline{\mathbf{m}}_{0} \simeq \mathbf{Q} \mathbf{q}_{3}
$$

- principal point is also the center of radial distortion


## -Optical Plane

A spatial plane with normal $p$ containing the projection center $C$ and a given image line $n$.

$$
\begin{array}{rlrl} 
& \text { optical ray given by } m & \mathbf{d} & \simeq \mathbf{Q}^{-1} \underline{\mathbf{m}} \\
\text { optical ray given by } m^{\prime} & \mathbf{d}^{\prime} & \simeq \mathbf{Q}^{-1} \underline{\mathbf{m}}^{\prime}
\end{array}
$$

$$
\mathbf{p} \simeq \mathbf{d} \times \mathbf{d}^{\prime}=\left(\mathbf{Q}^{-1} \underline{\mathbf{m}}\right) \times\left(\mathbf{Q}^{-1} \underline{\mathbf{m}}^{\prime}\right)=\mathbf{Q}^{\top}\left(\underline{\mathbf{m}} \times \underline{\mathbf{m}}^{\prime}\right)=\mathbf{Q}^{\top} \underline{\mathbf{n}}
$$

- note the way $\mathbf{Q}$ factors out!
hence, $0=\mathbf{p}^{\top}(\mathbf{X}-\mathbf{C})=\underline{\mathbf{n}}^{\top} \underbrace{\mathbf{Q}(\mathbf{X}-\mathbf{C})}_{\rightarrow 30}=\underline{\mathbf{n}}^{\top} \mathbf{P} \underline{\mathbf{X}}=\left(\mathbf{P}^{\top} \underline{\mathbf{n}}\right)^{\top} \underline{\mathbf{X}}$ for every $X$ in plane $\rho$
optical plane is given by $n: \quad \underline{\boldsymbol{\rho}} \simeq \mathbf{P}^{\top} \underline{\mathbf{n}}$

$$
\rho_{1} x+\rho_{2} y+\rho_{3} z+\rho_{4}=0
$$

## Cross－Check：Optical Ray as Optical Plane Intersection



$$
\mathbf{d}=\mathbf{p} \times \mathbf{p}^{\prime}=\left(\mathbf{Q}^{\top} \underline{\mathbf{n}}\right) \times\left(\mathbf{Q}^{\top} \underline{\mathbf{n}}^{\prime}\right)=\mathbf{Q}^{-1}\left(\underline{\mathbf{n}} \times \underline{\mathbf{n}}^{\prime}\right)=\mathbf{Q}^{-1} \underline{\mathbf{m}}
$$

## Summary: Projection Center; Optical Ray, Axis, Plane

General (finite) camera

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{q}_{1}^{\top} & q_{14} \\
\mathbf{q}_{2}^{\top} & q_{24} \\
\mathbf{q}_{3}^{\top} & q_{34}
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]
$$

$$
\begin{aligned}
& \underline{\mathbf{C}} \simeq \operatorname{rnull}(\mathbf{P}), \quad \mathbf{C}=-\mathbf{Q}^{-1} \mathbf{q} \\
& \mathbf{d}=\mathbf{Q}^{-1} \underline{\mathbf{m}} \\
& \mathbf{o}=\operatorname{det}(\mathbf{Q}) \mathbf{q}_{3} \\
& \underline{\mathbf{m}}_{0} \simeq \mathbf{Q}_{\mathbf{q}_{3}} \\
& \underline{\boldsymbol{\rho}}=\mathbf{P}^{\top} \underline{\mathbf{n}} \\
& \mathbf{K}=\left[\begin{array}{ccc}
a f & -a f \cot \theta & u_{0} \\
0 & f / \sin \theta & v_{0} \\
0 & 0 & 1
\end{array}\right] \\
& \mathbf{R} \\
& \mathbf{t}
\end{aligned}
$$

projection center (world coords.) $\rightarrow 35$ optical ray direction (world coords.) $\rightarrow 36$ outward optical axis (world coords.) $\rightarrow 37$ principal point (in image plane) $\rightarrow 38$ optical plane (world coords.) $\rightarrow 39$
camera (calibration) matrix $\left(f, u_{0}, v_{0}\right.$ in pixels) $\rightarrow 31$ camera rotation matrix (cam coords.) $\rightarrow 30$ camera translation vector (cam coords.) $\rightarrow 30$

## What Can We Do with An 'Uncalibrated' Perspective Camera?



How far is the engine from a given point on the tracks?
distance between sleepers (ties) 0.806 m but we cannot count them, the image resolution is too low
We will review some life-saving theory...
$\ldots$ and build a bit of geometric intuition. . .
In fact

- 'uncalibrated' $=$ the image contains a 'calibrating object' that suffices for the task at hand


## - Vanishing Point

Vanishing point (V.P.): The limit $m_{\infty}$ of the projection of a point $\mathbf{X}(\lambda)$ that moves along a space line $\mathbf{X}(\lambda)=\mathbf{X}_{0}+\lambda \mathbf{d}$ infinitely in one direction.
the image of the point at infinity on the line


$$
\underline{\mathbf{m}}_{\infty} \simeq \lim _{\lambda \rightarrow \pm \infty} \mathbf{P}\left[\begin{array}{c}
\mathbf{X}_{0}+\lambda \mathbf{d} \\
1
\end{array}\right]=\cdots \simeq \mathbf{Q} \mathbf{d}
$$

$\circledast$ P1; 1pt: Prove (use Cartesian coordinates and L'Hôpital's rule)

- the V.P. of a spatial line with directional vector $\mathbf{d}$ is $\underline{\mathbf{m}}_{\infty} \simeq \mathbf{Q} \mathbf{d}$
- V.P. is independent on line position $\mathbf{X}_{0}$, it depends on its directional vector only
- all parallel (world) lines share the same (image) V.P., including the optical ray defined by $m_{\infty}$


## Some Vanishing Point "Applications"


where is the sun?

what is the wind direction? (must have video)

fly above the lane, at constant altitude!

## - Vanishing Line

Vanishing line (V.L.): The set of vanishing points of all lines in a plane the image of the line at infinity in the plane and in all parallel planes (!)


- any box with parallel edges
- top (blue) and bottom (black) box planes are parallel, hence they share V.L. n
- V.L. $n$ corresponds to spatial plane of normal vector $\mathbf{p}=\mathbf{Q}^{\top} \underline{\mathbf{n}}$
because this is the normal vector of a parallel optical plane (!) $\rightarrow 39$ - a spatial plane of normal vector $\mathbf{p}$ has a V.L. represented by $\underline{\mathbf{n}}=\mathbf{Q}^{-\top} \mathbf{p}$.


## - Cross Ratio

Four distinct collinear spatial points $R, S, T, U$ define cross-ratio

$$
[R S T U]=\frac{|\overrightarrow{R T}|}{|\overrightarrow{S R}|} \frac{|\overrightarrow{U S}|}{|\overrightarrow{T U}|}
$$


a mnemonic $(\infty)$

- $|\overrightarrow{R T}|$ - signed distance from $R$ to $T$ in the arrow direction
- each point $X$ is once in numerator and once in denominator
- if $X$ is 1 st in a numerator term, it is 2 nd in a denominator term
- there are six cross-ratios from four points:

$$
[S R U T]=[R S T U],[R S U T]=\frac{1}{[R S T U]},[R T S U]=1-[R S T U]
$$



$$
\begin{equation*}
\text { Obs: } \left.\quad[R S T U]=\frac{|\underline{\mathbf{r}} \underline{\mathbf{t}} \underline{\mathbf{v}}|}{|\underline{\mathbf{s}} \underline{\underline{\mathbf{r}}} \mathbf{v}|} \cdot \frac{|\underline{\mathbf{u}} \mathbf{s} \quad \underline{\mathbf{v}}|}{|\underline{\mathbf{t}} \quad \underline{\mathbf{u}} \quad \underline{\mathbf{v}}|} \right\rvert\, \tag{1}
\end{equation*}
$$

$$
|\underline{\underline{\mathbf{r}}} \underline{\mathbf{t}} \quad \underline{\mathbf{v}}|=\operatorname{det}\left[\begin{array}{lll}
\underline{\mathbf{r}} & \underline{\mathbf{t}} & \underline{\mathbf{v}}
\end{array}\right]=(\underline{\mathbf{r}} \times \underline{\mathbf{t}})^{\top} \underline{\mathbf{v}} \quad \text { mixed product }
$$

## Corollaries:

- cross ratio is invariant under homographies $\underline{x}^{\prime} \simeq \mathbf{H x} \quad$ proof: plug $\mathbf{H x}$ in $(1):\left(\mathbf{H}^{-\top}(\underline{\mathbf{r}} \times \underline{t})\right)^{\top} \mathbf{H} \underline{\mathbf{v}}$
- cross ratio is invariant under perspective projection: $[R S T U]=[r$ stu]
- 4 collinear points: any perspective camera will "see" the same cross-ratio of their images
- we measure the same cross-ratio in image as on the world line
- one of the points $R, S, T, U$ may be at infinity (we take the limit, in effect $\frac{\infty}{\infty}=1$ )


## －1D Projective Coordinates

The 1－D projective coordinate of a point $P$ is defined by the following cross－ratio：

$$
[P]=\left[P_{0} P_{1} P P_{\infty}\right]=\left[p_{0} p_{1} p p_{\infty}\right]=\frac{\left|\overrightarrow{p_{0} p}\right|}{\left|\overrightarrow{p_{1} p_{0}}\right|} \frac{\left|\overrightarrow{p_{\infty} p_{1}}\right|}{\left|\overrightarrow{p p_{\infty}}\right|}=[p]
$$

naming convention：

$$
\begin{aligned}
P_{0}-\text { the origin } & {\left[P_{0}\right] } & =0 \\
P_{1}-\text { the unit point } & {\left[P_{1}\right] } & =1 \\
P_{\infty}-\text { the supporting point } & {\left[P_{\infty}\right] } & = \pm \infty
\end{aligned}
$$

$$
[P]=[p]
$$

$[P]$ is equal to Euclidean coordinate along $N$
$[p]$ is its measurement in the image plane
if the sign is not of interest，any cross－ratio containing $\left|p_{0} p\right|$ does the job


## Applications

－Given the image of a 3D line $N$ ，the origin，the unit point，and the vanishing point，then the Euclidean coordinate of any point $P \in N$ can be determined
－Finding V．P．of a line through a regular object

## Application: Counting Steps



- Namesti Miru underground station in Prague

detail around the vanishing point
Result: $[P]=214$ steps (correct answer is 216 steps)


## Application: Finding the Horizon from Repetitions


in 3D: $\left|P_{0} P\right|=2\left|P_{0} P_{1}\right|$ then

$$
\left[P_{0} P_{1} P P_{\infty}\right]=\frac{\left|P_{0} P\right|}{\left|P_{1} P_{0}\right|}=2 \quad \Rightarrow \quad x_{\infty}=\frac{x_{0}\left(2 x-x_{1}\right)-x x_{1}}{x+x_{0}-2 x_{1}}
$$

- $x-1 \mathrm{D}$ coordinate along the yellow line, positive in the arrow direction
- could be applied to counting steps $(\rightarrow 48)$ if there was no supporting line
$\circledast$ P1; 1pt: How high is the camera above the floor?

Thank You



