3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/tdv/start http://cmp.felk.cvut.cz mailto:sara@cmp.felk.cvut.cz phone ext. 7203

rev. September 20, 2022

Open Informatics Master's Course

Module II

Perspective Camera

- 21 Basic Entities: Points, Lines
- 22 Homography: Mapping Acting on Points and Lines
- Canonical Perspective Camera
- Changing the Outer and Inner Reference Frames
- 25 Projection Matrix Decomposition
- Anatomy of Linear Perspective Camera
- Vanishing Points and Lines

covered by

[H&Z] Secs: 2.1, 2.2, 3.1, 6.1, 6.2, 8.6, 2.5, Example: 2.19

▶ Basic Geometric Entities, their Representation, and Notation

- entities have names and representations
- names and their components:

entity	in 2-space	in 3-space
point	m = (u, v)	X = (x, y, z)
line	n	0
plane		π , φ

associated vector representations

$$\mathbf{m} = \begin{bmatrix} u \\ v \end{bmatrix} = [u, v]^{\top}, \quad \mathbf{X} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \mathbf{n}$$

will also be written in an 'in-line' form as $\mathbf{m}=(u,v)$, $\mathbf{X}=(x,y,z)$, etc.

- vectors are always meant to be columns $\mathbf{x} \in \mathbb{R}^{n \times 1}$
- associated homogeneous representations

$$\mathbf{m} = [m_1, m_2, m_3]^{\top}, \quad \mathbf{X} = [x_1, x_2, x_3, x_4]^{\top}, \quad \mathbf{n}$$

'in-line' forms: $\mathbf{\underline{m}} = (m_1, m_2, m_3), \ \mathbf{\underline{X}} = (x_1, x_2, x_3, x_4), \ \text{etc.}$

- ullet matrices are $\mathbf{Q} \in \mathbb{R}^{m imes n}$, linear map of a $\mathbb{R}^{n imes 1}$ vector is $\mathbf{y} = \mathbf{Q} \mathbf{x}$
- j-th element of vector \mathbf{m}_i is $(\mathbf{m}_i)_j$; element i,j of matrix \mathbf{P} is \mathbf{P}_{ij}

►Image Line (in 2D)

a finite line in the 2D (u, v) plane

$$(u, v) \in \mathbb{R}^2$$
 s.t. $a u + b v + c = 0$

has a parameter (homogeneous) vector

$$\underline{\mathbf{n}} \simeq (a, b, c)$$
 , $\|\underline{\mathbf{n}}\| \neq 0$

and there is an equivalence class for $\lambda \in \mathbb{R}, \lambda \neq 0$ $(\lambda a, \lambda b, \lambda c) \simeq (a, b, c)$

• standard representative for <u>finite</u> $\underline{\mathbf{n}} = (n_1, n_2, n_3)$ is $\lambda \underline{\mathbf{n}}$, where $\lambda = \frac{1}{\sqrt{n_1^2 + n_2^2}}$

'Finite' lines

assuming $n_1^2 + n_2^2 \neq 0$; **1** is the unit, usually **1** = 1 'Infinite' line

we augment the set of lines for a special entity called the line at infinity (ideal line)

$$\underline{\mathbf{n}}_{\infty} \simeq (0, 0, \mathbf{1})$$
 (standard representative)

- the set of equivalence classes of vectors in $\mathbb{R}^3 \setminus (0,0,0)$ forms the projective space \mathbb{P}^2
- line at infinity is a proper member of \mathbb{P}^2
- I may sometimes wrongly use = instead of \simeq , if you are in doubt, ask me

a set of rays $\rightarrow 21$

▶Image Point

Finite point
$$\mathbf{m}=(u,v)$$
 is incident on a finite line $\underline{\mathbf{n}}=(a,b,c)$ iff

assuming $m_3 \neq 0$

$$a\,u + b\,v + c = 0$$

can be rewritten as (with scalar product): $(u, v, \mathbf{1}) \cdot (a, b, c) = \underline{\mathbf{m}}^{\top} \underline{\mathbf{n}} = 0$

'Finite' points

- ullet a finite point is <u>also</u> represented by a homogeneous vector $\underline{\mathbf{m}} \simeq (u,v,\mathbf{1})$, $\|\underline{\mathbf{m}}\|
 eq 0$
- the equivalence class for $\lambda \in \mathbb{R}$, $\lambda \neq 0$ is $(m_1, m_2, m_3) = \lambda \mathbf{m} \simeq \mathbf{m}$
- the standard representative for $\underline{\text{finite}}$ point $\underline{\mathbf{m}}$ is $\lambda\,\underline{\mathbf{m}}$, where $\lambda=\frac{1}{m_3}$
- when $\mathbf{1}=1$ then units are pixels and $\lambda \mathbf{\underline{m}}=(u,v,1)$
- ullet when ${\bf 1}=f$ then all elements have a similar magnitude, $f\sim$ image diagonal

use ${f 1}=1$ unless you know what you are doing; all entities participating in a formula must be expressed in the same units

'Infinite' points

- ullet we augment for points at infinity (ideal points) $\underline{\mathbf{m}}_{\infty} \simeq (m_1, m_2, 0)$ proper members of \mathbb{P}^2
- all such points lie on the line at infinity (ideal line) $\mathbf{n}_{\infty} \simeq (0,0,1)$, i.e. $\mathbf{m}_{\infty}^{\top} \mathbf{n}_{\infty} = 0$

▶Line Intersection and Point Join

The point of intersection m of image lines n and n', $n \not\simeq n'$ is

proof: If $\underline{\mathbf{m}} = \underline{\mathbf{n}} \times \underline{\mathbf{n}}'$ is the intersection point, it must be incident on both lines. Indeed, using known equivalences from vector algebra

$$\underline{\mathbf{n}}^{\top} \underbrace{(\underline{\mathbf{n}} \times \underline{\mathbf{n}}')}_{\underline{\mathbf{m}}} \equiv \underline{\mathbf{n}}'^{\top} \underbrace{(\underline{\mathbf{n}} \times \underline{\mathbf{n}}')}_{\underline{\mathbf{m}}} \equiv 0$$

The join n of two image points m and m', $m \not\simeq m'$ is

$$\mathbf{n} \simeq \mathbf{m} \times \mathbf{m}'$$

Paralel lines intersect (somewhere) on the line at infinity $\underline{\mathbf{n}}_{\infty} \simeq (0,0,1)$:

$$a u + b v + c = 0,$$

$$a u + b v + d = 0,$$

$$d \neq c$$

$$(a,b,c) \times (a,b,d) \simeq (b,-a,0)$$

- all such intersections lie on \mathbf{n}_{∞}
- line at infinity therefore represents the set of (unoriented) directions in the plane
- Matlab: m = cross(n, n_prime);

▶ Homography in \mathbb{P}^2

Projective plane \mathbb{P}^2 : Vector space of dimension 3 <u>excluding the zero vector</u>, $\mathbb{R}^3 \setminus (0,0,0)$, factorized to linear equivalence classes ('rays'), $\underline{\mathbf{x}} \simeq \lambda \underline{\mathbf{x}}$, $\lambda \neq 0$ including 'points at infinity'

we call $\underline{\mathbf{x}} \in \mathbb{P}^2$ 'points'

Homography in \mathbb{P}^2 : Non-singular linear mapping in \mathbb{P}^2

an analogic definition for \mathbb{P}^3

 $\mathbf{x}' \simeq \mathbf{H} \, \mathbf{x}, \quad \mathbf{H} \in \mathbb{R}^{3,3}$ non-singular

Defining properties

- collinear points are mapped to collinear points
- concurrent lines are mapped to concurrent lines
- concurrent lines are mapped to concurrent lines
- and point-line incidence is preserved

lines of points are mapped to lines of points

- concurrent = intersecting at a point e.g. line intersection points mapped to line intersection points
- H is a 3×3 non-singular matrix, $\lambda H \simeq H$ equivalence class, 8 degrees of freedom
- homogeneous matrix representative: $\det \mathbf{H} = 1$

 $\mathbf{H} \in \mathrm{SL}(3)$

• what we call homography here is often called 'projective collineation' in mathematics

► Mapping 2D Points and Lines by Homography

• incidence is preserved:
$$(\mathbf{m}')^{\top}\mathbf{n}' \simeq \mathbf{m}^{\top}\mathbf{H}^{\top}\mathbf{H}^{-\top}\mathbf{n} = \mathbf{m}^{\top}\mathbf{n} = 0$$

Mapping a finite 2D point $\mathbf{m} = (u, v)$ to $\mathbf{m} = (u', v')$

- 1. extend the Cartesian (pixel) coordinates to homogeneous coordinates, $\underline{\mathbf{m}} = (u, v, \mathbf{1})$
- 2. map by homography, $\mathbf{m}' = \mathbf{H} \mathbf{m}$
- 3. if $m_3' \neq 0$ convert the result $\underline{\mathbf{m}}' = (m_1', m_2', m_3')$ back to Cartesian coordinates (pixels),

$$u' = \frac{m_1'}{m_3'} \mathbf{1}, \qquad v' = \frac{m_2'}{m_3'} \mathbf{1}$$

- note that, typically, $m_3' \neq 1$
- an infinite point $\mathbf{m} = (u, v, 0)$ maps the same way

 $m_3'=1$ when ${\bf H}$ is affine

