3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203

rev. September 27, 2022

Open Informatics Master's Course

Some Homographic Tasters

Rectification of camera rotation: $\rightarrow 59$ (geometry), $\rightarrow 129$ (homography estimation)

Homographic Mouse for Visual Odometry: [Mallis 2007]

illustrations courtesy of AMSL Racing Team, Meiji University and LIBVISO: Library for VISual Odometry

$$
\mathbf{H} \simeq \mathbf{K}\left(\mathbf{R}-\frac{\mathbf{t n}^{\top}}{d}\right) \mathbf{K}^{-1} \quad \text { maps from plane to translated plane }[\mathbf{H} \& Z, \text { p. 327] }
$$

Homography Subgroups: Euclidean Mapping (aka Rigid Motion)

- Euclidean mapping (EM): rotation, translation and their combination

$$
\mathbf{H}=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & t_{x} \\
\sin \phi & \cos \phi & t_{y} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \in \mathrm{SE}(2)
$$

- note: action $H(\mathbf{x})=\mathbf{R x}+\mathbf{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, not commutative

rotation by 30°, then translation by $(7,2)$ $\mathrm{EM}=$ The most general homography preserving

1. lengths: Let $\mathbf{x}_{i}^{\prime}=H\left(\mathbf{x}_{i}\right)$. Then

$$
\left\|\mathbf{x}_{2}^{\prime}-\mathbf{x}_{1}^{\prime}\right\|=\left\|H\left(\mathbf{x}_{2}\right)-H\left(\mathbf{x}_{1}\right)\right\|=\stackrel{\circledast}{\circledR 1 ; 1 \mathrm{pt}}=\left\|\mathbf{x}_{2}-\mathbf{x}_{1}\right\|
$$

2. angles check the dot-product of normalized differences from a point $(\mathbf{x}-\mathbf{z})^{\top}(\mathbf{y}-\mathbf{z}) \quad$ (Cartesian(!))
3. areas: $\operatorname{det} \mathbf{H}=1 \Rightarrow$ unit Jacobian; follows from 1. and 2.

- eigenvalues $\left(1, e^{-i \phi}, e^{i \phi}\right)$
- eigenvectors when $\phi \neq k \pi, k=0,1, \ldots$ (columnwise)

$$
\mathbf{e}_{1} \simeq\left[\begin{array}{c}
t_{x}+t_{y} \cot \frac{\phi}{2} \\
t_{y}-t_{x} \cot \frac{\phi}{2} \\
2
\end{array}\right], \quad \mathbf{e}_{2} \simeq\left[\begin{array}{l}
i \\
1 \\
0
\end{array}\right], \quad \mathbf{e}_{3} \simeq\left[\begin{array}{c}
-i \\
1 \\
0
\end{array}\right] \quad \mathbf{e}_{2}, \mathbf{e}_{3} \text { - circular points, } i \text { - imaginary unit }
$$

4. circular points: complex points at infinity $(i, 1,0),(-i, 1,0)$ (preserved even by similarity)

- similarity: scaled Euclidean mapping (does not preserve lengths, areas)

Homography Subgroups: Affine Mapping (Affinity)

$$
\mathbf{H}=\left[\begin{array}{ccc}
a_{11} & a_{12} & t_{x} \\
a_{21} & a_{22} & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Affinity $=$ The most general homography preserving

- parallelism
- ratio of areas
- ratio of lengths on parallel lines
- linear combinations of vectors (e.g. midpoints, centers of gravity)
- convex hull
- line at infinity $\underline{\mathbf{n}}_{\infty}$ (not pointwise)

$$
\text { observe } \mathbf{H}^{\top} \underline{\mathbf{n}}_{\infty} \simeq\left[\begin{array}{ccc}
a_{11} & a_{21} & 0 \\
a_{12} & a_{22} & 0 \\
t_{x} & t_{y} & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\underline{\mathbf{n}}_{\infty} \quad \Rightarrow \quad \underline{\mathbf{n}}_{\infty} \simeq \mathbf{H}^{-\top} \underline{\mathbf{n}}_{\infty}
$$ does not preserve

- lengths
- angles
- areas
- circular points

Homography Subgroups: General Homography

$$
\mathbf{H}=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right] \quad \mathbf{H} \in \operatorname{SL}(3)
$$

preserves only

- incidence and concurrency
- collinearity
- cross-ratio (ratio of ratios) on the line $\rightarrow 46$ does not preserve
- lengths
- areas
- parallelism
- ratio of areas
- ratio of lengths
- linear combinations of vectors
- convex hull
- line at infinity $\underline{\mathbf{n}}_{\infty}$

line $\underline{\mathbf{n}}=(1,0,1)$ is mapped to $\underline{\mathbf{n}}_{\infty}: \mathbf{H}^{-\top} \underline{\mathbf{n}} \simeq \underline{\mathbf{n}}_{\infty}$
(where in the picture is the line n ?)

Canonical Perspective Camera（Pinhole Camera，Camera Obscura）

1．in this picture we are looking＇down the street＇
2．right－handed canonical coordinate system (x, y, z) with unit vectors $\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}$
3．origin $=$ center of projection C
4．image plane π at unit distance from C
5．optical axis O is perpendicular to π
6．principal point x_{p} ：intersection of O and π
7．perspective camera is given by C and π

projected point in the natural image coordinate system：

$$
\tan \alpha=\frac{y^{\prime}}{1}=y^{\prime}=\frac{y}{1+z-1}=\frac{y}{z}, \quad x^{\prime}=\frac{x}{z}
$$

Natural and Canonical Image Coordinate Systems

$$
\begin{aligned}
& \text { projected point in canonical camera }(z \neq 0) \\
& \qquad\left(x^{\prime}, y^{\prime}, 1\right)=\left(\frac{x}{z}, \frac{y}{z}, 1\right)=\frac{1}{z}(x, y, z) \simeq(x, y, z) \equiv\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\underbrace{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\mathbf{P}_{0}=\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right]} \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\mathbf{P}_{0} \underline{\mathbf{X}}
\end{aligned}
$$

projected point in scanned image
scale by f and translate origin to image corner

$$
\frac{1}{z}\left[\begin{array}{c}
f x+z u_{0} \\
f y+z v_{0} \\
z
\end{array}\right] \simeq\left[\begin{array}{llc}
f & 0 & u_{0} \\
0 & f & v_{0} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\mathbf{K} \mathbf{P}_{0} \underline{\mathbf{X}}=\mathbf{P} \underline{\mathbf{X}}
$$

－＇calibration＇matrix \mathbf{K} transforms canonical \mathbf{P}_{0} to standard perspective camera \mathbf{P}

－Computing with Perspective Camera Projection Matrix

Projection from world to image in standard camera \mathbf{P} ：

$$
\underbrace{\left[\begin{array}{cccc}
f & 0 & u_{0} & 0 \\
0 & f & v_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\mathbf{P}}\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
f x+u_{0} z \\
f y+v_{0} z \\
z
\end{array}\right] \simeq \underbrace{\left[\begin{array}{c}
x+\frac{z}{f} u_{0} \\
y+\frac{z}{f} v_{0} \\
\frac{z}{f}
\end{array}\right]}_{(\mathrm{a})} \simeq\left[\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right]=\underline{\mathbf{m}}
$$

cross－check：$\quad \frac{m_{1}}{m_{3}}=\frac{f x}{z}+u_{0}=u, \quad \frac{m_{2}}{m_{3}}=\frac{f y}{z}+v_{0}=v \quad$ when $\quad m_{3} \neq 0$
$f-$＇focal length＇－converts length ratios to pixels，$\quad[f]=\mathrm{px}, \quad f>0$
$\left(u_{0}, v_{0}\right)$－principal point in pixels

Perspective Camera：

1．dimension reduction
2．nonlinear unit change $\mathbf{1} \mapsto 1 \cdot z / f$ ，see（a）
for convenience we use $P_{11}=P_{22}=f$ rather than $P_{33}=1 / f$ and the u_{0}, v_{0} in relative units
3．$m_{3}=0$ represents points at infinity in image plane π
i．e．points with $z=0$

Changing The Outer (World) Reference Frame

A transformation of a point from the world to camera coordinate system:

$$
\mathbf{X}_{c}=\mathbf{R} \mathbf{X}_{w}+\mathbf{t}
$$

\mathbf{R} - camera rotation matrix
world orientation in the camera coordinate frame \mathcal{F}_{c}
t - camera translation vector

$$
\left.\begin{array}{rl}
\mathbf{P} \underline{\mathbf{X}}_{c}=\mathbf{K} \mathbf{P}_{0}\left[\begin{array}{c}
\mathbf{X}_{c} \\
1
\end{array}\right]=\mathbf{K} \mathbf{P}_{0}\left[\begin{array}{c}
\mathbf{R} \mathbf{X}_{w}+\mathbf{t} \\
1
\end{array}\right]=\underbrace{\mathbf{K}}_{\mathbf{P}_{0}} \begin{array}{rl}
\mathbf{I} & \mathbf{0}
\end{array}] & \begin{array}{c}
\mathbf{R} \\
\mathbf{0}^{\top}
\end{array} \\
\mathbf{t}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X}_{w} \\
1
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \underline{\mathbf{X}}_{w}
$$

- \mathbf{R} is rotation, $\mathbf{R}^{\top} \mathbf{R}=\mathbf{I}, \operatorname{det} \mathbf{R}=+1$
$\mathbf{I} \in \mathbb{R}^{3,3}$ identity matrix
- 6 extrinsic parameters: 3 rotation angles (Euler theorem), 3 translation components
- alternative, often used, camera representations

$$
\mathbf{P}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]
$$

C - camera position in the world reference frame \mathcal{F}_{w}
third row of $\mathbf{R}: \mathbf{r}_{3}=\mathbf{R}^{-1}[0,0,1]^{\top}$

- we can save some conversion and computation by noting that $\quad \mathbf{K R}\left[\begin{array}{ll}\mathbf{I} & -\mathbf{C}\end{array}\right] \underline{\mathbf{X}}=\mathbf{K R}(\mathbf{X}-\mathbf{C})$

-Changing the Inner (Image) Reference Frame

The general form of calibration matrix \mathbf{K} includes

- skew angle θ of the digitization raster
- pixel aspect ratio a

$$
\mathbf{K}=\left[\begin{array}{ccc}
a f & -a f \cot \theta & u_{0} \\
0 & f / \sin \theta & v_{0} \\
0 & 0 & 1
\end{array}\right] \quad \text { units: }[f]=\mathrm{px},\left[u_{0}\right]=\mathrm{px},\left[v_{0}\right]=\mathrm{px},[a]=1
$$

$\circledast \mathrm{H} 1 ; 2 \mathrm{pt}$: Give the parameters $f, a, \theta, u_{0}, v_{0}$ a precise meaning by decomposing \mathbf{K} to simple maps; deadline $\mathbf{L D}+2 \mathrm{wk}$ Hints:

1. image projects to orthogonal system F^{\perp}, then it maps by skew to F^{\prime}, then by scale $a f, f$ to $F^{\prime \prime}$, then by translation by u_{0}, v_{0} to $F^{\prime \prime \prime}$
2. Skew: Do not confuse it with the shear mapping. Express point \mathbf{x} as

$$
\mathbf{x}=u^{\prime} \mathbf{e}_{u^{\prime}}+v^{\prime} \mathbf{e}_{v^{\prime}}=u^{\perp} \mathbf{e}_{u}^{\perp}+v^{\perp} \mathbf{e}_{v}^{\perp}
$$

e: are unit-length basis vectors; consider their four pairwise dot-products.
3. \mathbf{K} maps from F^{\perp} to $F^{\prime \prime \prime}$ as

$$
w^{\prime \prime \prime}\left[u^{\prime \prime \prime}, v^{\prime \prime \prime}, 1\right]^{\top}=\mathbf{K}\left[u^{\perp}, v^{\perp}, 1\right]^{\top}
$$

-Summary: Projection Matrix of a General Finite Perspective Camera

$$
\underline{\mathbf{m}} \simeq \mathbf{P} \underline{\mathbf{X}}, \quad \mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right] \simeq \mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]
$$

$$
\text { a recipe for filling } \mathbf{P}
$$

general finite perspective camera has 11 parameters:

- 5 intrinsic parameters: $f, u_{0}, v_{0}, a, \theta$
- 6 extrinsic parameters: $\mathbf{t}, \mathbf{R}(\alpha, \beta, \gamma)$

Representation Theorem: The set of projection matrices \mathbf{P} of finite perspective cameras is isomorphic to the set of homogeneous 3×4 matrices with the left 3×3 submatrix \mathbf{Q} non-singular.
random finite camera: $Q=\operatorname{rand}(3,3)$; while $\operatorname{det}(Q)==0, Q=\operatorname{rand}(3,3) ;$ end, $P=[Q, \operatorname{rand}(3,1)]$;

Projection Matrix Decomposition

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right] \quad \longrightarrow \quad \mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]
$$

$$
\begin{array}{ll}
\mathbf{Q} \in \mathbb{R}^{3,3} & \text { full rank } \\
\mathbf{K} \in \mathbb{R}^{3,3} & \text { (if finite perspective camera; see [H\&Z, Sec. 6.3] for cameras at infinity) } \\
\mathbf{R} \in \mathbb{R}^{3,3} & \underline{\text { rotation } \mathrm{mtx}:} \quad \mathbf{R}^{\top} \mathbf{R}=\mathbf{I} \text { and } \operatorname{det} \mathbf{R}=+1
\end{array}
$$

1．$\left[\begin{array}{ll}\mathbf{Q} & \mathbf{q}\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right]=\left[\begin{array}{ll}\mathbf{K R} & \mathbf{K t}\end{array}\right]$

$$
\text { also } \rightarrow 35
$$

2． RQ decomposition of $\mathbf{Q}=\mathbf{K R}$ using three Givens rotations

$$
\mathbf{K}=\mathbf{Q} \underbrace{\mathbf{R}_{32} \mathbf{R}_{31} \mathbf{R}_{21}}_{\mathbf{R}^{-1}} \quad \mathbf{Q} \mathbf{R}_{32}=\left[\begin{array}{lll}
\because & \ddots & \vdots \\
\because & 0 & \ddots
\end{array}\right], \mathbf{Q R}_{32} \mathbf{R}_{31}=\left[\begin{array}{lll}
\ddots & \ddots & \vdots \\
0 & 0 & \ddots
\end{array}\right], \mathbf{Q R}_{32} \mathbf{R}_{31} \mathbf{R}_{21}=\left[\begin{array}{lll}
0 & \ddots & \vdots \\
0 & \ddots & \vdots \\
0 & 0 & \ddots
\end{array}\right]
$$

$\mathbf{R}_{i j}$ zeroes element $i j$ in \mathbf{Q} affecting only columns i and j and the sequence preserves previously zeroed elements，e．g．
（see the next slide for derivation details）

$$
\mathbf{R}_{32}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c & -s \\
0 & s & c
\end{array}\right] \text { gives } \begin{gathered}
c^{2}+s^{2}=1 \\
0=k_{32}=c q_{32}+s q_{33}
\end{gathered} \Rightarrow c=\frac{q_{33}}{\sqrt{q_{32}^{2}+q_{33}^{2}}} \quad s=\frac{-q_{32}}{\sqrt{q_{32}^{2}+q_{33}^{2}}}
$$

＊P1；1pt：Multiply known matrices \mathbf{K}, \mathbf{R} and then decompose back；discuss numerical errors
－ RQ decomposition nonuniqueness： $\mathbf{K R}=\mathbf{K T}^{-1} \mathbf{T R}$ ，where $\mathbf{T}=\operatorname{diag}(-1,-1,1)$ is also a rotation，we must correct the result so that the diagonal elements of \mathbf{K} are all positive
＇thin＇RQ decomposition
－care must be taken to avoid overflow，see［Golub \＆van Loan 2013，sec．5．2］

|RQ Decomposition Step

```
Q = Array [ q #1,#2&,{3, 3}];
R32 ={{1,0,0},{0, c,-s},{0, s,c}}; R32 // MatrixForm
```

$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c\end{array}\right)$
Q1 = Q.R32 ; Q1 // MatrixForm
$\left(\begin{array}{lllll}q_{1,1} & c & q_{1,2}+s q_{1,3}-s & q_{1,2}+c & q_{1,3} \\ q_{2,1} & c & q_{2,2}+s q_{2,3}-s q_{2,2}+c & q_{2,3} \\ q_{3,1} & c & q_{3,2}+s & q_{3,3} & -s \\ q_{3,2}+c & q_{3,3}\end{array}\right)$
$s 1=\operatorname{Solve}\left[\left\{Q 1[[3]][[2]]=0, c^{\wedge} 2+s \wedge 2=1\right\},\{c, s\}\right][[2]]$
$\left\{c \rightarrow \frac{q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}}, s \rightarrow-\frac{q_{3,2}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}}\right\}$
Q1 /. s1 // Simplify // MatrixForm
$\left(\begin{array}{ccc}q_{1,1} \frac{-q_{1,3} q_{3,2}+q_{1,2} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}} & \frac{q_{1,2} q_{3,2}+q_{1,3} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}} \\ q_{2,1} & \frac{-q_{2,3} q_{3,2}+q_{2,2} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}} & \frac{q_{2,2} q_{3,2}+q_{2,3} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}} \\ q_{3,1} & \sqrt{q_{3,2}^{2}+q_{3,3}^{2}}\end{array}\right)$

Center of Projection（Optical Center）

Observation：finite \mathbf{P} has a non－trivial right null－space
rank 3 but 4 columns

Theorem

Let \mathbf{P} be a camera and let there be $\underline{\mathbf{B}} \neq \mathbf{0}$ s．t． $\mathbf{P} \underline{\mathbf{B}}=\mathbf{0}$ ．Then $\underline{\mathrm{B}}$ is equivalent to the projection center $\underline{\mathbf{C}}$ （homogeneous，in world coordinate frame）．

Proof．

1．Let $A B$ be a spatial line（ B given from $\mathbf{P} \underline{B}=\mathbf{0}, A \neq B$ ）．Then

$$
\underline{\mathbf{X}}(\lambda) \simeq \lambda \underline{\mathbf{A}}+(1-\lambda) \underline{\mathbf{B}}, \quad \lambda \in \mathbb{R} \quad \text { (world frame) }
$$

2．It projects to

$$
\mathbf{P} \underline{\mathbf{X}}(\lambda) \simeq \lambda \mathbf{P} \underline{\mathbf{A}}+(1-\lambda) \mathbf{P} \underline{\mathbf{B}} \simeq \mathbf{P} \underline{\mathbf{A}}
$$

－the entire line projects to a single point \Rightarrow it must pass through the projection center of \mathbf{P}
－this holds for any choice of $A \neq B \Rightarrow$ the only common point of the lines is the C ，i．e．$\underline{\mathbf{B}} \simeq \underline{\mathbf{C}}$
Hence

$$
\mathbf{0}=\mathbf{P} \underline{\mathbf{C}}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{l}
\mathbf{C} \\
1
\end{array}\right]=\mathbf{Q} \mathbf{C}+\mathbf{q} \Rightarrow \mathbf{C}=-\mathbf{Q}^{-1} \mathbf{q}
$$

$\underline{\mathbf{C}}=\left(c_{j}\right)$ ，where $c_{j}=(-1)^{j} \operatorname{det} \mathbf{P}^{(j)}$ ，in which $\mathbf{P}^{(j)}$ is \mathbf{P} with column j dropped
Matlab：C＿homo＝null（P）；or C＝－Q\q；

-Optical Ray

Optical ray: Spatial line that projects to a single image point.

1. Consider the following spatial line (world frame)
$\mathbf{d} \in \mathbb{R}^{3}$ line direction vector, $\|\mathbf{d}\|=1, \lambda \in \mathbb{R}$, Cartesian representation

$$
\mathbf{X}(\lambda)=\mathbf{C}+\lambda \mathbf{d}
$$

2. The projection of the (finite) point $X(\lambda)$ is

$$
\begin{aligned}
\underline{\mathbf{m}} & \simeq\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X}(\lambda) \\
1
\end{array}\right]=\mathbf{Q}(\mathbf{C}+\lambda \mathbf{d})+\mathbf{q}=\lambda \mathbf{Q} \mathbf{d}= \\
& =\lambda\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{l}
\mathbf{d} \\
0
\end{array}\right]
\end{aligned}
$$

... which is also the image of a point at infinity in \mathbb{P}^{3}

- optical ray line corresponding to image point m is the set

$$
\mathbf{X}(\mu)=\mathbf{C}+\mu \mathbf{Q}^{-1} \underline{\mathbf{m}}, \quad \mu \in \mathbb{R} \quad(\mu=1 / \lambda)
$$

- optical ray direction may be represented by a point at infinity $(\mathbf{d}, 0)$ in \mathbb{P}^{3}
- optical ray is expressed in world coordinate frame

Thank You

