
3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics

Faculty of Electrical Engineering
Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/tdv/start

http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz

phone ext. 7203

rev. December 13, 2022

Open Informatics Master’s Course

https://cw.fel.cvut.cz/wiki/courses/tdv/start
h
http://cmp.felk.cvut.cz
h
mailto:sara@cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz

Module II

Perspective Camera

2.1Basic Entities: Points, Lines

2.2Homography: Mapping Acting on Points and Lines

2.3Canonical Perspective Camera

2.4Changing the Outer and Inner Reference Frames

2.5Projection Matrix Decomposition

2.6Anatomy of Linear Perspective Camera

2.7Vanishing Points and Lines

covered by

[H&Z] Secs: 2.1, 2.2, 3.1, 6.1, 6.2, 8.6, 2.5, Example: 2.19

3D Computer Vision: II. Perspective Camera (p. 16/197) R. Šára, CMP; rev. 13–Dec–2022

▶Basic Geometric Entities, their Representation, and Notation

• entities have names and representations

• names and their components:

entity in 2-space in 3-space

point m = (u, v) X = (x, y, z)

line n O

plane π, φ

• associated vector representations

m =

[
u
v

]
= [u, v]⊤, X =

xy
z

 , n

will also be written in an ‘in-line’ form as m = (u, v), X = (x, y, z), etc.

• vectors are always meant to be columns x ∈ Rn×1

• associated homogeneous representations

m= [m1,m2,m3]
⊤, X= [x1, x2, x3, x4]

⊤, n

‘in-line’ forms: m= (m1,m2,m3), X= (x1, x2, x3, x4), etc.

• matrices are Q ∈ Rm×n, linear map of a Rn×1 vector is y = Qx

• j-th element of vector mi is (mi)j ; element i, j of matrix P is Pij

3D Computer Vision: II. Perspective Camera (p. 17/197) R. Šára, CMP; rev. 13–Dec–2022

▶Image Line (in 2D)

a finite line in the 2D (u, v) plane (u, v) ∈ R2 s.t. a u+ b v + c = 0

has a parameter (homogeneous) vector n ≃ (a, b, c) , ∥n∥ ̸= 0

and there is an equivalence class for λ ∈ R, λ ̸= 0 (λa, λb, λc) ≃ (a, b, c)

‘Finite’ lines

• standard representative for finite n= (n1, n2, n3) is λn, where λ = 111√
n2
1+n2

2

assuming n2
1 + n2

2 ̸= 0; 111 is the unit, usually 111 = 1

‘Infinite’ line

• we augment the set of lines for a special entity called the line at infinity (ideal line)

n∞ ≃ (0, 0,111) (standard representative)

• the set of equivalence classes of vectors in R3 \ (0, 0, 0) forms the projective space P2 a set of rays →21

• line at infinity is a proper member of P2

• I may sometimes wrongly use = instead of ≃, if you are in doubt, ask me

3D Computer Vision: II. Perspective Camera (p. 18/197) R. Šára, CMP; rev. 13–Dec–2022

▶Image Point

Finite point m = (u, v) is incident on a finite line n= (a, b, c) iff iff = works either way!

a u+ b v + c = 0

can be rewritten as (with scalar product): (u, v,111) · (a, b, c) = m⊤n= 0

’Finite’ points

• a finite point is also represented by a homogeneous vector m≃ (u, v,111) , ∥m∥ ≠ 0

• the equivalence class for λ ∈ R, λ ̸= 0 is (m1, m2, m3) = λm≃ m

• the standard representative for finite point m is λm, where λ = 111
m3

assuming m3 ̸= 0

• when 111 = 1 then units are pixels and λm= (u, v, 1)

• when 111 = f then all elements have a similar magnitude, f ∼ image diagonal
use 111 = 1 unless you know what you are doing;

all entities participating in a formula must be expressed in the same units

’Infinite’ points

• we augment for points at infinity (ideal points) m∞ ≃ (m1,m2, 0) proper members of P2

• all such points lie on the line at infinity (ideal line) n∞ ≃ (0, 0, 1), i.e. m⊤
∞ n∞ = 0

3D Computer Vision: II. Perspective Camera (p. 19/197) R. Šára, CMP; rev. 13–Dec–2022

▶Line Intersection and Point Join

The point of intersection m of image lines n and n′, n ̸≃ n′ is

m≃ n× n′

n′

n

m

proof: If m= n× n′ is the intersection point, it
must be incident on both lines. Indeed, using
known equivalences from vector algebra

n⊤ (n× n′)︸ ︷︷ ︸
m

≡ n′⊤ (n× n′)︸ ︷︷ ︸
m

≡ 0

The join n of two image points m and m′, m ̸≃ m′ is

n≃ m×m′ m

n

m′

Paralel lines intersect (somewhere) on the line at infinity n∞ ≃ (0, 0, 1):

a u+ b v + c = 0,

a u+ b v + d = 0, d ̸= c

(a, b, c)× (a, b, d) ≃ (b,−a, 0)

• all such intersections lie on n∞

• line at infinity therefore represents the set of (unoriented) directions in the plane

• Matlab: m = cross(n, n prime);

3D Computer Vision: II. Perspective Camera (p. 20/197) R. Šára, CMP; rev. 13–Dec–2022

▶Homography in P2

λx2

x1

x2
(0, 0, 0)

x3

the representatives

elements of P2

a plane selecting

R3

Projective plane P2: Vector space of dimension 3 excluding the
zero vector, R3 \ (0, 0, 0), factorized to linear equivalence classes
(‘rays’), x≃ λx, λ ̸= 0 including ‘points at infinity’

we call x ∈ P2 ‘points’

Homography in P2: Non-singular linear mapping in P2 an analogic definition for P3

x′ ≃ Hx, H ∈ R3,3 non-singular

Defining properties

• collinear points are mapped to collinear points lines of points are mapped to lines of points

• concurrent lines are mapped to concurrent lines concurrent = intersecting at a point
• and point-line incidence is preserved e.g. line intersection points mapped to line intersection points

• H is a 3× 3 non-singular matrix, λH ≃ H equivalence class, 8 degrees of freedom
• homogeneous matrix representative: detH = 1 H ∈ SL(3)

• what we call homography here is often called ‘projective collineation’ in mathematics

3D Computer Vision: II. Perspective Camera (p. 21/197) R. Šára, CMP; rev. 13–Dec–2022

▶Mapping 2D Points and Lines by Homography

H−⊤

H

m′ ≃ Hm (image) point

n′ ≃ H−⊤n (image) line H−⊤ = (H−1)⊤ = (H⊤)−1

• incidence is preserved: (m′)⊤n′ ≃ m⊤H⊤H−⊤n= m⊤n= 0

Mapping a finite 2D point m = (u, v) to m= (u′, v′)

1. extend the Cartesian (pixel) coordinates to homogeneous coordinates, m= (u, v,111)

2. map by homography, m′ = Hm

3. if m′
3 ̸= 0 convert the result m′ = (m′

1,m
′
2,m

′
3) back to Cartesian coordinates (pixels),

u′ =
m′

1

m′
3

111, v′ =
m′

2

m′
3

111

• note that, typically, m′
3 ̸= 1 m′

3 = 1 when H is affine

• an infinite point m= (u, v, 0) maps the same way

3D Computer Vision: II. Perspective Camera (p. 22/197) R. Šára, CMP; rev. 13–Dec–2022

Some Homographic Tasters

Rectification of camera rotation: →59 (geometry), →129 (homography estimation)

H ≃ KR⊤K−1 maps from image plane to facade plane

Homographic Mouse for Visual Odometry: [Mallis 2007]

illustrations courtesy of AMSL Racing Team, Meiji University and LIBVISO: Library for VISual Odometry

H ≃ K
(
R− tn⊤

d

)
K−1 maps from plane to translated plane [H&Z, p. 327]

3D Computer Vision: II. Perspective Camera (p. 23/197) R. Šára, CMP; rev. 13–Dec–2022

▶Homography Subgroups: Euclidean Mapping (aka Rigid Motion)

• Euclidean mapping (EM): rotation, translation and their
combination

H =

cosϕ − sinϕ tx
sinϕ cosϕ ty
0 0 1

 =

[
R t

0⊤ 1

]
∈ SE(2)

• note: action H(x) = Rx+ t : R2 → R2, not commutative

−2 −1 0 1 2 3 4 5 6 7 8 9 10

−1

0

1

2

3

4

5

u

v

rotation by 30◦, then translation by (7, 2)

EM = The most general homography preserving

1. lengths: Let x′
i = H(xi). Then

∥x′
2 − x′

1∥ = ∥H(x2)−H(x1)∥ =
⊛ P1; 1pt

· · · = ∥x2 − x1∥

2. angles check the dot-product of normalized differences from a point (x − z)⊤(y − z) (Cartesian(!))

3. areas: detH = 1 ⇒ unit Jacobian; follows from 1. and 2.

• eigenvalues
(
1, e−iϕ, eiϕ

)
• eigenvectors when ϕ ̸= kπ, k = 0, 1, . . . (columnwise)

e1 ≃

tx + ty cot ϕ
2

ty − tx cot ϕ
2

2

 , e2 ≃

i1
0

 , e3 ≃

−i
1
0

 e2, e3 – circular points, i – imaginary unit

4. circular points: complex points at infinity (i, 1, 0), (−i, 1, 0) (preserved even by similarity)

• similarity: scaled Euclidean mapping (does not preserve lengths, areas)

3D Computer Vision: II. Perspective Camera (p. 24/197) R. Šára, CMP; rev. 13–Dec–2022

▶Homography Subgroups: Affine Mapping (Affinity)

H =

a11 a12 tx
a21 a22 ty
0 0 1

−2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

−1

0

1

2

3

4

5

u

v

rotation by 30◦

then scaling by diag(1, 1.5, 1)

then translation by (7, 2)

Affinity = The most general homography preserving
• parallelism
• ratio of areas
• ratio of lengths on parallel lines
• linear combinations of vectors (e.g. midpoints, centers of gravity)
• convex hull
• line at infinity n∞ (not pointwise)

does not preserve
• lengths
• angles
• areas
• circular points

Euclidean mappings preserve all properties affine mappings preserve, of course3D Computer Vision: II. Perspective Camera (p. 25/197) R. Šára, CMP; rev. 13–Dec–2022

observe H
⊤
n∞ ≃

a11 a21 0
a12 a22 0
tx ty 1

00
1

 =

00
1

 = n∞ ⇒ n∞ ≃ H
−⊤

n∞

▶Homography Subgroups: General Homography

H =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 H ∈ SL(3)

preserves only

• incidence and concurrency
• collinearity
• cross-ratio (ratio of ratios) on the line →46

does not preserve

• lengths
• areas
• parallelism
• ratio of areas
• ratio of lengths
• linear combinations of vectors
• convex hull
• line at infinity n∞

−2 −1 0 1 2 3 4 5 6 7 8 9

−1

0

1

2

3

4

5

u

v

H =

7 −0.5 6
3 1 3
1 0 1

line n = (1, 0, 1) is mapped to n∞: H−⊤n ≃ n∞

(where in the picture is the line n?)

3D Computer Vision: II. Perspective Camera (p. 26/197) R. Šára, CMP; rev. 13–Dec–2022

▶Canonical Perspective Camera (Pinhole Camera, Camera Obscura)

Oex

X = (x, y, z)

π

xp

(x′, y′, 1)

ezC

ey

1. in this picture we are looking ‘down the street’

2. right-handed canonical coordinate system (x, y, z) with unit
vectors ex, ey , ez

3. origin = center of projection C

4. image plane π at unit distance from C

5. optical axis O is perpendicular to π

6. principal point xp: intersection of O and π

7. perspective camera is given by C and π

z − 11

X

y
ey

y′

π

C
O

y–z plane

projected point in the natural image coordinate system:

tanα =
y′

1
= y′ =

y

1 + z − 1
=

y

z
, x′ =

x

z

3D Computer Vision: II. Perspective Camera (p. 27/197) R. Šára, CMP; rev. 13–Dec–2022

▶Natural and Canonical Image Coordinate Systems

projected point in canonical camera (z ̸= 0)

(x′, y′, 1) =
(x
z
,
y

z
, 1
)
=

1

z
(x, y, z) ≃ (x, y, z) ≡

xy
z

 =

1 0 0 0
0 1 0 0
0 0 1 0

︸ ︷︷ ︸

P0=
[
I 0

]
·

x
y
z
1

 = P0 X

projected point in scanned image scale by f and translate origin to image corner

xp = (u0, v0)

(u, v)

(0, 0) eu

ev

Oex

X = (x, y, z)

π

xp

(x′, y′, 1)

ezC

ey

u = f
x

z
+ u0

v = f
y

z
+ v0

1

z

f x+ z u0

f y + z v0
z

 ≃

f 0 u0

0 f v0
0 0 1

 ·

1 0 0 0
0 1 0 0
0 0 1 0

 ·

x
y
z
1

 = KP0 X= PX

• ‘calibration’ matrix K transforms canonical P0 to standard perspective camera P

3D Computer Vision: II. Perspective Camera (p. 28/197) R. Šára, CMP; rev. 13–Dec–2022

▶Computing with Perspective Camera Projection Matrix

Projection from world to image in standard camera P:

f 0 u0 0
0 f v0 0
0 0 1 0

︸ ︷︷ ︸

P

x
y
z
1

 =

fx+ u0z
fy + v0z

z

 ≃

x+ z
f
u0

y + z
f
v0

z
f

︸ ︷︷ ︸

(a)

≃

m1

m2

m3

 = m

cross-check:
m1

m3
=

f x

z
+ u0 = u,

m2

m3
=

f y

z
+ v0 = v when m3 ̸= 0

f – ‘focal length’ – converts length ratios to pixels, [f] = px, f > 0

(u0, v0) – principal point in pixels

Perspective Camera:

1. dimension reduction since P ∈ R3,4

2. nonlinear unit change 111 7→ 111 · z/f , see (a)
for convenience we use P11 = P22 = f rather than P33 = 1/f and the u0, v0 in relative units

3. m3 = 0 represents points at infinity in image plane π i.e. points with z = 0

3D Computer Vision: II. Perspective Camera (p. 29/197) R. Šára, CMP; rev. 13–Dec–2022

▶Changing The Outer (World) Reference Frame

A transformation of a point from the world to camera coordinate system:

Xc = RXw + t

R; tFw F
world

cam

R – camera rotation matrix world orientation in the camera coordinate frame Fc

t – camera translation vector world origin in the camera coordinate frame Fc

PXc= KP0

[
Xc

1

]
= KP0

[
RXw + t

1

]
= K

[
I 0

]
︸ ︷︷ ︸

P0

[
R t

0⊤ 1

]
︸ ︷︷ ︸

T

[
Xw

1

]
= K

[
R t

]
Xw

P0 (a 3× 4 mtx) discards the last row of T

• R is rotation, R⊤R = I, detR = +1 I ∈ R3,3 identity matrix

• 6 extrinsic parameters: 3 rotation angles (Euler theorem), 3 translation components

• alternative, often used, camera representations

P = K
[
R t

]
= KR

[
I −C

]
C – camera position in the world reference frame Fw t = −RC
r⊤3 – optical axis in the world reference frame Fw third row of R: r3 = R−1[0, 0, 1]⊤

• we can save some conversion and computation by noting that KR
[
I −C

]
X= KR(X−C)

3D Computer Vision: II. Perspective Camera (p. 30/197) R. Šára, CMP; rev. 13–Dec–2022

▶Changing the Inner (Image) Reference Frame

The general form of calibration matrix K includes

• skew angle θ of the digitization raster

• pixel aspect ratio a

K =

a f −a f cot θ u0

0 f/ sin θ v0
0 0 1

 units: [f] = px, [u0] = px, [v0] = px, [a] = 1

⊛ H1; 2pt: Give the parameters f, a, θ, u0, v0 a precise meaning by decomposing K to simple maps; deadline LD+2wk

Hints:

1. image projects to orthogonal system F⊥, then it maps by skew to F ′, then by scale a f , f to F ′′, then by translation
by u0, v0 to F ′′′

2. Skew: Do not confuse it with the shear mapping. Express point x as

x = u′eu′ + v′ev′ = u⊥e⊥u + v⊥e⊥v

e′u = e⊥u

e′ve⊥v
θ

e: are unit-length basis vectors; consider their four pairwise dot-products.

3. K maps from F⊥ to F ′′′ as
w′′′ [u′′′, v′′′, 1]⊤ = K[u⊥, v⊥, 1]⊤

3D Computer Vision: II. Perspective Camera (p. 31/197) R. Šára, CMP; rev. 13–Dec–2022

https://en.wikipedia.org/wiki/Shear_mapping

▶Summary: Projection Matrix of a General Finite Perspective Camera

m≃ PX, P =
[
Q q

]
≃ K

[
R t

]
= KR

[
I −C

]
a recipe for filling P

general finite perspective camera has 11 parameters:

• 5 intrinsic parameters: f , u0, v0, a, θ finite camera: detK ̸= 0

• 6 extrinsic parameters: t, R(α, β, γ)

Representation Theorem: The set of projection matrices P of finite perspective cameras is isomorphic to the set of
homogeneous 3× 4 matrices with the left 3× 3 submatrix Q non-singular.

random finite camera: Q = rand(3,3); while det(Q)==0, Q = rand(3,3); end, P = [Q, rand(3,1)];

3D Computer Vision: II. Perspective Camera (p. 32/197) R. Šára, CMP; rev. 13–Dec–2022

▶Projection Matrix Decomposition

P =
[
Q q

]
−→ K

[
R t

]
Q ∈ R3,3 full rank (if finite perspective camera; see [H&Z, Sec. 6.3] for cameras at infinity)

K ∈ R3,3 upper triangular with positive diagonal elements
R ∈ R3,3 rotation mtx: R

⊤
R = I and detR = +1

1.
[
Q q

]
= K

[
R t

]
=
[
KR Kt

]
also →35

2. RQ decomposition of Q = KR using three Givens rotations [H&Z, p. 579]

K = Q R32R31R21︸ ︷︷ ︸
R−1

QR32 =
[· · ·
· · ·
· 0 ·

]
, QR32R31 =

[· · ·
· · ·
0 0 ·

]
, QR32R31R21 =

[· · ·
0 · ·
0 0 ·

]

Rij zeroes element ij in Q affecting only columns i and j and the sequence preserves previously zeroed elements, e.g.
(see the next slide for derivation details)

R32 =

1 0 0
0 c −s
0 s c

 gives
c2 + s2 = 1

0 = k32 = c q32 + s q33
⇒ c =

q33√
q232 + q233

s =
−q32√
q232 + q233

⊛ P1; 1pt: Multiply known matrices K, R and then decompose back; discuss numerical errors

• RQ decomposition nonuniqueness: KR = KT−1TR, where T = diag(−1,−1, 1) is also a rotation, we must correct
the result so that the diagonal elements of K are all positive ‘thin’ RQ decomposition

• care must be taken to avoid overflow, see [Golub & van Loan 2013, sec. 5.2]

3D Computer Vision: II. Perspective Camera (p. 33/197) R. Šára, CMP; rev. 13–Dec–2022

RQ Decomposition Step

Q = Array [q #1 ,#2 & , { 3 , 3 }] ;

R32 = { { 1 , 0 , 0 } , { 0 , c , - s } , { 0 , s , c } } ; R32 // MatrixForm

1 0 0

0 c - s

0 s c

Q1 = Q . R32 ; Q1 // MatrixForm

q 1,1 c q 1,2 + s q 1,3 - s q 1,2 + c q 1,3

q 2,1 c q 2,2 + s q 2,3 - s q 2,2 + c q 2,3

q 3,1 c q 3,2 + s q 3,3 - s q 3,2 + c q 3,3

s1 = Solve [{ Q1 [[3]] [[2]] ⩵ 0 , c ^ 2 + s ^ 2 ⩵ 1 } , { c , s }] [[2]]

 c →

q 3,3

q 3,2
2

+ q 3,3
2

, s → -

q 3,2

q 3,2
2

+ q 3,3
2

Q1 /. s1 // Simplify // MatrixForm

q 1,1

-q1,3 q3,2 +q1,2 q3,3

q3,2
2

+q3,3
2

q1,2 q3,2 +q1,3 q3,3

q3,2
2

+q3,3
2

q 2,1

-q2,3 q3,2 +q2,2 q3,3

q3,2
2

+q3,3
2

q2,2 q3,2 +q2,3 q3,3

q3,2
2

+q3,3
2

q 3,1 0 q 3,2
2

+ q 3,3
2

3D Computer Vision: II. Perspective Camera (p. 34/197) R. Šára, CMP; rev. 13–Dec–2022

▶Center of Projection (Optical Center)

Observation: finite P has a non-trivial right null-space rank 3 but 4 columns

Theorem
Let P be a camera and let there be B ̸= 0 s.t. PB= 0. Then B is equivalent to the projection center C
(homogeneous, in world coordinate frame).

Proof.
1. Let AB be a spatial line (B given from PB= 0, A ̸= B). Then

X(λ) ≃ λA+ (1− λ)B, λ ∈ R (world frame)
B?

B = C?

A X(λ)

2. It projects to
PX(λ) ≃ λPA+ (1− λ)PB≃ PA

• the entire line projects to a single point ⇒ it must pass through the projection center of P

• this holds for any choice of A ̸= B ⇒ the only common point of the lines is the C, i.e. B ≃ C ⊓⊔
Hence

0 = PC=
[
Q q

] [C
1

]
= QC+ q ⇒ C = −Q−1q

C= (cj), where cj = (−1)j detP(j), in which P(j) is P with column j dropped

Matlab: C_homo = null(P); or C = -Q\q;

3D Computer Vision: II. Perspective Camera (p. 35/197) R. Šára, CMP; rev. 13–Dec–2022

▶Optical Ray

Optical ray: Spatial line that projects to a single image point.

1. Consider the following spatial line (world frame)
d ∈ R3 line direction vector, ∥d∥ = 1, λ ∈ R, Cartesian representation

X(λ) = C+ λd

2. The projection of the (finite) point X(λ) is

m≃
[
Q q

] [X(λ)
1

]
= Q(C+ λd) + q = λQd =

= λ
[
Q q

] [d
0

]
. . . which is also the image of a point at infinity in P3

• optical ray line corresponding to image point m is the set

X(µ) = C+ µQ−1m, µ ∈ R (µ = 1/λ)

X(λ)

C
π

m

d

• optical ray direction may be represented by a point at infinity (d, 0) in P3

• optical ray is expressed in world coordinate frame

3D Computer Vision: II. Perspective Camera (p. 36/197) R. Šára, CMP; rev. 13–Dec–2022

▶Optical Axis

Optical axis: Optical ray that is perpendicular to image plane π

1. points X on a given line N parallel to π project to a point at infinity
(u, v, 0) in π: uv

0

 ≃ PX=

q⊤
1 q14

q⊤
2 q24

q⊤
3 q34

[X
1

]
2. therefore the set of points X is parallel to π iff

q⊤
3 X+ q34 = 0

3. this is a plane equation with ±q3 as the normal vector

N

C

o

π

X

4. optical axis direction: substitution P 7→ λP must not change the direction

5. we select (assuming det(R) > 0)

o = det(Q)q3

if P 7→ λP then det(Q) 7→ λ3 det(Q) and q3 7→ λq3 [H&Z, p. 161]

• the axis is expressed in world coordinate frame

3D Computer Vision: II. Perspective Camera (p. 37/197) R. Šára, CMP; rev. 13–Dec–2022

▶Principal Point

Principal point: The intersection of image plane and the optical axis

1. as we saw, q3 is the directional vector of optical axis

2. we take point at infinity on the optical axis that must project to the
principal point m0

3. then

m0 ≃
[
Q q

] [q3

0

]
= Qq3

m0�q3 C
principal point: m0 ≃ Qq3

• principal point is also the center of radial distortion

3D Computer Vision: II. Perspective Camera (p. 38/197) R. Šára, CMP; rev. 13–Dec–2022

▶Optical Plane

A spatial plane with normal p containing the projection center C and a given image line n.

� d0 pCm0 n mX d�
optical ray given by m d ≃ Q−1m

optical ray given by m′ d′ ≃ Q−1m′

p ≃ d× d′ = (Q−1m)× (Q−1m′) = Q⊤(m×m′) = Q⊤n

• note the way Q factors out!

hence, 0 = p⊤(X−C) = n⊤ Q(X−C)︸ ︷︷ ︸
→30

= n⊤PX= (P⊤n)⊤X for every X in plane ρ

optical plane is given by n: ρ≃ P⊤n ρ1 x+ ρ2 y + ρ3 z + ρ4 = 0

3D Computer Vision: II. Perspective Camera (p. 39/197) R. Šára, CMP; rev. 13–Dec–2022

Cross-Check: Optical Ray as Optical Plane Intersection

m
�n0n d p0

Cp
optical plane normal given by n p = Q⊤n

optical plane normal given by n′ p′ = Q⊤n′

d = p× p′ = (Q⊤n)× (Q⊤n′) = Q−1(n× n′) = Q−1m

3D Computer Vision: II. Perspective Camera (p. 40/197) R. Šára, CMP; rev. 13–Dec–2022

▶Summary: Projection Center; Optical Ray, Axis, Plane

General (finite) camera

P =
[
Q q

]
=

q
⊤
1 q14

q⊤
2 q24

q⊤
3 q34

 = K
[
R t

]
= KR

[
I −C

]

C≃ rnull(P), C = −Q−1q projection center (world coords.) →35

d = Q−1 m optical ray direction (world coords.) →36

o = det(Q)q3 outward optical axis (world coords.) →37

m0 ≃ Qq3 principal point (in image plane) →38

ρ= P⊤ n optical plane (world coords.) →39

K =

a f −a f cot θ u0

0 f/ sin θ v0
0 0 1

 camera (calibration) matrix (f , u0, v0 in pixels) →31

R camera rotation matrix (cam coords.) →30

t camera translation vector (cam coords.) →30

3D Computer Vision: II. Perspective Camera (p. 41/197) R. Šára, CMP; rev. 13–Dec–2022

What Can We Do with An ‘Uncalibrated’ Perspective Camera?

How far is the engine from a given point on the tracks?

distance between sleepers (ties) 0.806m but we cannot count them, the image resolution is too low

We will review some life-saving theory. . .
. . . and build a bit of geometric intuition. . .

In fact

• ‘uncalibrated’ = the image contains a ‘calibrating object’ that suffices for the task at hand

3D Computer Vision: II. Perspective Camera (p. 42/197) R. Šára, CMP; rev. 13–Dec–2022

▶Vanishing Point

Vanishing point (V.P.): The limit m∞ of the projection of a point X(λ) that moves along a space line
X(λ) = X0 + λd infinitely in one direction. the image of the point at infinity on the line

X0X0 + �d d Cd m m1
�

m∞ ≃ lim
λ→±∞

P

[
X0 + λd

1

]
= · · · ≃ Qd

⊛ P1; 1pt: Prove (use Cartesian

coordinates and L’Hôpital’s rule)

• the V.P. of a spatial line with directional vector d is m∞ ≃ Qd

• V.P. is independent on line position X0, it depends on its directional vector only

• all parallel (world) lines share the same (image) V.P., including the optical ray defined by m∞

3D Computer Vision: II. Perspective Camera (p. 43/197) R. Šára, CMP; rev. 13–Dec–2022

Some Vanishing Point “Applications”

where is the sun? what is the wind direction? fly above the lane,
(must have video) at constant altitude!

3D Computer Vision: II. Perspective Camera (p. 44/197) R. Šára, CMP; rev. 13–Dec–2022

▶Vanishing Line

Vanishing line (V.L.): The set of vanishing points of all lines in a plane the image of the line at infinity in the plane

and in all parallel planes (!)v1 n | plane normal

m | line orientation vetor
v2
• any box with parallel edges

• top (blue) and bottom (black) box planes are parallel,
hence they share V.L. n

• V.L. n corresponds to spatial plane of normal vector p = Q⊤n
because this is the normal vector of a parallel optical plane (!) →39

• a spatial plane of normal vector p has a V.L. represented by n= Q−⊤p.

3D Computer Vision: II. Perspective Camera (p. 45/197) R. Šára, CMP; rev. 13–Dec–2022

▶Cross Ratio

Four distinct collinear spatial points R,S, T, U define cross-ratio

[RSTU] =
|
−→
RT |
|
−→
SR|

|
−→
US|
|
−→
TU |

R S T U

a mnemonic (∞)

• |−→RT | – signed distance from R to T in the arrow direction

• each point X is once in numerator and once in denominator

• if X is 1st in a numerator term, it is 2nd in a denominator term

• there are six cross-ratios from four points:

[SRUT] = [RSTU], [RSUT] =
1

[RSTU]
, [RTSU] = 1 − [RSTU], · · · �

v s tn
u

r p

S

R

N

C

U

T

v /∈ n

Obs: [RSTU] =

∣∣r t v
∣∣∣∣s r v
∣∣ ·
∣∣u s v

∣∣∣∣t u v
∣∣ , ∣∣r t v

∣∣ = det
[
r t v

]
= (r× t)⊤v mixed product (1)

Corollaries:
• cross ratio is invariant under homographies x′ ≃ Hx proof: plug Hx in (1): (H−⊤(r× t))⊤Hv

• cross ratio is invariant under perspective projection: [RSTU] = [r s t u]

• 4 collinear points: any perspective camera will “see” the same cross-ratio of their images
• we measure the same cross-ratio in image as on the world line
• one of the points R, S, T , U may be at infinity (we take the limit, in effect ∞

∞ = 1)

3D Computer Vision: II. Perspective Camera (p. 46/197) R. Šára, CMP; rev. 13–Dec–2022

▶1D Projective Coordinates

The 1-D projective coordinate of a point P is defined by the following cross-ratio:

[P] = [P0 P1 P P∞] = [p0 p1 p p∞] =
|−−→p0 p|
|−−→p1 p0|

|−−−→p∞ p1|
|−−→p p∞|

= [p]

naming convention:

P0 – the origin [P0] = 0

P1 – the unit point [P1] = 1

P∞ – the supporting point [P∞] = ±∞

[P] = [p]

[P] is equal to Euclidean coordinate along N

[p] is its measurement in the image plane

if the sign is not of interest, any cross-ratio containing |p0 p| does the job

p∞p0 p1 p

p0

p1

p∞

n′n

p

N ′‖N in 3D

Applications
• Given the image of a 3D line N , the origin, the unit point, and the vanishing point, then the Euclidean

coordinate of any point P ∈ N can be determined →48

• Finding V.P. of a line through a regular object →49

3D Computer Vision: II. Perspective Camera (p. 47/197) R. Šára, CMP; rev. 13–Dec–2022

Application: Counting Steps

p∞
p

p0

p1

su
p
p
o
rtin

g
 lin

e

• Namesti Miru underground station in Prague

p

p∞

detail around the vanishing point

Result: [P] = 214 steps (correct answer is 216 steps) 4Mpx camera

3D Computer Vision: II. Perspective Camera (p. 48/197) R. Šára, CMP; rev. 13–Dec–2022

Application: Finding the Horizon from Repetitions

p

p∞

p0

p1

P1

P

P0

in 3D: |P0P | = 2|P0P1| then [H&Z, p. 218]

[P0P1PP∞] =
|P0P |
|P1P0|

= 2 ⇒ x∞ =
x0 (2x− x1)− xx1

x+ x0 − 2x1

• x – 1D coordinate along the yellow line, positive in the arrow direction
• could be applied to counting steps (→48) if there was no supporting line

⊛ P1; 1pt: How high is the camera above the floor?

3D Computer Vision: II. Perspective Camera (p. 49/197) R. Šára, CMP; rev. 13–Dec–2022

Homework Problem

⊛ H2; 3pt: What is the ratio of heights of Building A to Building B?
• expected: conceptual solution; use notation from this figure
• deadline: LD+2weeks

B

A

tA

u

z

p

h

n∞

fB

tB
m

fA

Hints

1. What are the interesting properties of line h connecting the top tB of Buiding B with the point m at which the horizon intersects the
line p joining the foots fA, fB of both buildings? [1 point]

2. How do we actually get the horizon n∞? (we do not see it directly, there are some hills there. . .) [1 point]

3. Give a formula for measuring the length ratio. Make sure you distinguish points in 3D from their images. [formula = 1 point]

3D Computer Vision: II. Perspective Camera (p. 50/197) R. Šára, CMP; rev. 13–Dec–2022

2D Projective Coordinates

V.P.

locate on the plane
pt we want to

origin in 3D

y-coordinate axis in 3D

unit pt

x-coordinate axis in 3D unit pt

V.P.

p0 px1 px px∞

p1

p

py∞

py

py1

[Px] = [P0 Px1 Px Px∞] [Py] = [P0 Py1 Py Py∞]

3D Computer Vision: II. Perspective Camera (p. 51/197) R. Šára, CMP; rev. 13–Dec–2022

Application: Measuring on the Floor (Wall, etc)

San Giovanni in Laterano, Rome

• measuring distances on the floor in terms of tile units
• what are the dimensions of the seal? Is it circular (assuming square tiles)?
• needs no explicit camera calibration

because we can see the calibrating object (vanishing points)

3D Computer Vision: II. Perspective Camera (p. 52/197) R. Šára, CMP; rev. 13–Dec–2022

Module III

Computing with a Single Camera

3.1Calibration: Internal Camera Parameters from Vanishing Points and Lines

3.2Camera Resection: Projection Matrix from 6 Known Points

3.3Exterior Orientation: Camera Rotation and Translation from 3 Known Points

3.4Relative Orientation Problem: Rotation and Translation between Two Point Sets

covered by

[1] [H&Z] Secs: 8.6, 7.1, 22.1

[2] Fischler, M.A. and Bolles, R.C . Random Sample Consensus: A Paradigm for Model Fitting with Applications
to Image Analysis and Automated Cartography. Communications of the ACM 24(6):381–395, 1981

[3] [Golub & van Loan 2013, Sec. 2.5]

3D Computer Vision: III. Computing with a Single Camera (p. 53/197) R. Šára, CMP; rev. 13–Dec–2022

Obtaining Vanishing Points and Lines

• orthogonal direction pairs can be collected from multiple images by camera rotation

• vanishing line can be obtained from vanishing points and/or regularities (→49)

3D Computer Vision: III. Computing with a Single Camera (p. 54/197) R. Šára, CMP; rev. 13–Dec–2022

▶Camera Calibration from Vanishing Points and Lines

Problem: Given finite vanishing points and/or vanishing lines, compute K

d3n31 n12d1d2
v3 n23 v2

v1

di = λiQ
−1vi, i = 1, 2, 3 →43

pij = µijQ
⊤nij , i, j = 1, 2, 3, i ̸= j →39

(2)

• method: eliminate λi, µij , R from (2) and solve for K.

Configurations allowing elimination of R

1. orthogonal rays d1 ⊥ d2 in space then

0 = d⊤
1 d2 = v⊤

1 Q
−⊤Q−1v2 = v⊤

1 (KK⊤)−1︸ ︷︷ ︸
ω (IAC)

v2

2. orthogonal planes pij ⊥ pik in space

0 = p⊤
ijpik = n⊤

ij QQ⊤nik = n⊤
ij ω

−1nik

3. orthogonal ray and plane dk ∥ pij , k ̸= i, j normal parallel to optical ray

pij ≃ dk ⇒ Q⊤nij = λi
µij

Q−1vk ⇒ nij = κQ−⊤Q−1vk = κω vk, κ ̸= 0

• nij may be constructed from non-orthogonal vi and vj , e.g. using the cross-ratio
• ω is a symmetric, positive definite 3× 3 matrix IAC = Image of Absolute Conic

• equations are quadratic in K but linear in ω

3D Computer Vision: III. Computing with a Single Camera (p. 55/197) R. Šára, CMP; rev. 13–Dec–2022

▶cont’d

configuration equation # constraints

(3) orthogonal vanishing points v⊤
i ω vj = 0 1

(4) orthogonal vanishing lines n⊤
ij ω

−1nik = 0 1

(5) vanishing points orthogonal to vanishing lines nij = κω vk 2

(6) orthogonal image raster θ = π/2 ω12 = ω21 = 0 1

(7) unit aspect a = 1 when θ = π/2 ω11 − ω22 = 0 1

(8) known principal point u0 = v0 = 0 ω13 = ω31 = ω23 = ω32 = 0 2

• these are homogeneous linear equations for the 5 parameters in ω or ω−1 in the form Dw = 0
κ can be eliminated from (5)

• we need at least 5 constraints for full ω symmetric 3× 3

• we get K from ω−1 = KK⊤ by Choleski decomposition
the decomposition returns a positive definite upper triangular matrix

one avoids solving an explicit set of quadratic equations for the parameters in K

3D Computer Vision: III. Computing with a Single Camera (p. 56/197) R. Šára, CMP; rev. 13–Dec–2022

https://en.wikipedia.org/wiki/Cholesky_decomposition

Examples

Assuming orthogonal raster, unit aspect (ORUA): θ = π/2, a = 1

ω ≃

 1 0 −u0

0 1 −v0
−u0 −v0 f2 + u2

0 + v20

Ex 1:
Assuming ORUA and known m0 = (u0, v0), two finite orthogonal vanishing points give f

v⊤
1 ω v2 = 0 ⇒ f2 =

∣∣(v1 −m0)
⊤(v2 −m0)

∣∣
in this formula, v1,2, m0 are Cartesian (not homogeneous)!

Ex 2:

Non-orthogonal vanishing points vi, vj , known angle ϕ: cosϕ =
v⊤
i ωvj√

v⊤
i ωvi

√
v⊤
j ωvj

• leads to polynomial equations

• e.g. ORUA and u0 = v0 = 0 gives

(f2 + v⊤
i vj)

2 = (f2 + ∥vi∥2) · (f2 + ∥vj∥2) · cos2 ϕ

3D Computer Vision: III. Computing with a Single Camera (p. 57/197) R. Šára, CMP; rev. 13–Dec–2022

▶Camera Orientation from Two Finite Vanishing Points

Problem: Given K and two vanishing points corresponding to two known orthogonal directions d1, d2, compute
camera orientation R with respect to the plane.

• 3D coordinate system choice, e.g.:

d1 = (1, 0, 0), d2 = (0, 1, 0)

• we know that

di ≃ Q−1vi = (KR)−1vi = R−1 K−1vi︸ ︷︷ ︸
wi

Rdi ≃ wi

• knowing d1,2 we conclude that wi/∥wi∥ is the i-th column ri of R

• the third column is orthogonal: r3 ≃ r1 × r2

R =
[

w1
∥w1∥

w2
∥w2∥

w1×w2
∥w1×w2∥

]
• we have to care about the signs ±wi (such that detR = 1)

.

v2
d2 d1 v1

some suitable scenes

3D Computer Vision: III. Computing with a Single Camera (p. 58/197) R. Šára, CMP; rev. 13–Dec–2022

Application: Planar Rectification

Principle: Rotate camera (image plane) parallel to the plane of interest.

m≃ KR
[
I −C

]
X m′ ≃ K

[
I −C

]
X

m′ ≃ K(KR)−1 m= KR⊤K−1 m= Hm

• H is the rectifying homography
• both K and R can be calibrated from two finite vanishing points assuming ORUA →57

• not possible when one of them is (or both are) infinite
• without ORUA we would need 4 additional views to calibrate K as on →54

3D Computer Vision: III. Computing with a Single Camera (p. 59/197) R. Šára, CMP; rev. 13–Dec–2022

▶Camera Resection

Camera calibration and orientation from a known set of k ≥ 6 reference points and their images {(Xi,mi)}6i=1.

P

m̂i

mi

ei

Xi

• Xi are considered exact

• mi is a measurement subject to detection error

mi = m̂i + ei Cartesian

• where λi m̂i = PXi

3D Computer Vision: III. Computing with a Single Camera (p. 60/197) R. Šára, CMP; rev. 13–Dec–2022

Resection Targets

-120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120

0

20

40

60

80

100

120

140

key1
2

3
4

8
7

6
5

−7,11

−8,10

−9,9

−5,11

−6,10

−7,9

−8,8

−3,11

−4,10

−5,9

−6,8

−7,7

−8,6

−9,5

−1,11

−2,10

−3,9

−4,8

−5,7

−6,6

−7,5

−8,4

1,11

0,10

−1,9

−2,8

−3,7

−4,6

−5,5

−6,4

−7,3

3,11

2,10

1,9

0,8

−1,7

−2,6

−3,5

−4,4

−5,3

3,9

2,8

1,7

0,6

−1,5

−2,4

−3,3

3,7

2,6

1,5

0,4

−1,3

3,5

2,4

1,3

4,4

3,3

−6,12 −4,12

−9,7

−2,12

−10,6

0,12 2,12

−6,2

4,10

−4,2

4,8

−2,2

4,6

0,2 2,2

−10,8

1,13

calibration chart automatic calibration point detection
based on a distributed bitcode (2× 4 = 8 bits)

z

• target translated at least once

• by a calibrated (known) translation

• Xi point locations looked up in a table based on
their bitcode

resection target with translation stage

3D Computer Vision: III. Computing with a Single Camera (p. 61/197) R. Šára, CMP; rev. 13–Dec–2022

▶The Minimal Problem for Camera Resection

Problem: Given k = 6 corresponding pairs
{
(Xi, mi)

}k
i=1

, find P

λimi = PXi, P =

 q⊤
1 q14

q⊤
2 q24

q⊤
3 q34

 Xi = (xi, yi, zi, 1), i = 1, 2, . . . , k, k = 6

mi = (ui, vi, 1), λi ∈ R, λi ̸= 0, |λi| < ∞
easily modifiable for infinite points Xi but be aware of →64

expanded: λiui = q⊤
1 Xi + q14, λivi = q⊤

2 Xi + q24, λi = q⊤
3 Xi + q34

after elimination of λi: (q⊤
3 Xi + q34)ui = q⊤

1 Xi + q14, (q⊤
3 Xi + q34)vi = q⊤

2 Xi + q24

Then

Aq =

X⊤

1 1 0⊤ 0 −u1X
⊤
1 −u1

0⊤ 0 X⊤
1 1 −v1X

⊤
1 −v1

...
...

X⊤
k 1 0⊤ 0 −ukX

⊤
k −uk

0⊤ 0 X⊤
k 1 −vkX

⊤
k −vk

·

q1

q14
q2

q24
q3

q34

 = 0 (9)

• we need 11 indepedent parameters for P
• A ∈ R2k,12, q ∈ R12

• 6 points in a general position give rankA = 12 and there is no (non-trivial) null space
• drop one row to get rank-11 matrix, then the basis vector of the null space of A gives q

3D Computer Vision: III. Computing with a Single Camera (p. 62/197) R. Šára, CMP; rev. 13–Dec–2022

▶The Jack-Knife Solution for k = 6

• given the 6 correspondences, we have 12 equations for the 11 parameters
• can we use all the information present in the 6 points?

Jack-knife estimation
1. n := 0

2. for i = 1, 2, . . . , 2k do
a) delete i-th row from A, this gives Ai

b) if dimnullAi > 1 continue with the next i
c) n := n+ 1
d) compute the right null-space qi of Ai e.g. by ‘economy-size’ SVD

e) q̂i:= qi normalized to q34 = 1 and dimension-reduced assuming finite cam. with P3,4 = 1

3. from all n vectors q̂i collected in Step 2.e compute

q =
1

n

n∑
i=1

q̂i, var[q] =
n− 1

n
diag

n∑
i=1

(q̂i − q)(q̂i − q)⊤
regular for n ≥ 11

variance of the sample mean

• have a solution + an error estimate, per individual elements of P (except P34)
• at least 5 points must be in a general position (→64)

• large error indicates near degeneracy

• computation not efficient with k > 6 points, needs
(2k
11

)
draws, e.g. k = 7 ⇒ 364 draws

• better error estimation method: decompose Pi to Ki, Ri, ti (→33), represent Ri with 3 parameters (e.g. Euler angles, or in
exponential map representation →144) and compute the errors for the parameters

• even better: use the SE(3) Lie group for (Ri, ti) and average its Lie-algebraic representations

3D Computer Vision: III. Computing with a Single Camera (p. 63/197) R. Šára, CMP; rev. 13–Dec–2022

▶Degenerate (Critical) Configurations for Camera Resection

Let X = {Xi; i = 1, . . .} be a set of points and P1 ̸≃ Pj be two regular (rank-3) cameras. Then two
configurations (P1,X) and (Pj ,X) are image-equivalent if

P1Xi ≃ PjXi for all Xi ∈ X

there is a non-trivial set of other cameras that see the same image{C1C2C1C
Case 4

Results
• importantly: If all calibration points Xi ∈ X lie on a plane κ then camera

resection is non-unique and all image-equivalent camera centers lie on a
spatial line C with the C∞ = κ ∩ C excluded

this also means we cannot resect if all Xi are infinite

• and more: by adding points Xi ∈ X to C we gain nothing

• there are additional image-equivalent configurations, see next

Proof sketch: If Q, T are suitable homographies then P1 ≃ QP0T, where P0 is canonical and the analysis can be made

with P̂j ≃ Q−1Pj

P0 TXi︸ ︷︷ ︸
Yi

≃ P̂j TXi︸ ︷︷ ︸
Yi

for all Yi ∈ Y

see [H&Z, Sec. 22.1.2] for a full prof

3D Computer Vision: III. Computing with a Single Camera (p. 64/197) R. Šára, CMP; rev. 13–Dec–2022

cont’d (all cases)C C
Case 5 Case 6

• points lie on three optical rays or one optical ray and one
optical plane

• cameras C1, C2 co-located at point C
• Case 5: camera sees 3 isolated point images
• Case 6: cam. sees a line of points and an isolated pointC C1

C 01C1C2 {C1C2C1C
Case 3 Case 4

• points lie on a line C and

1. on two lines meeting C at C∞, C′
∞

2. or on a plane meeting C at C∞

• cameras lie on a line C \ {C∞, C′
∞}

• Case 3: camera sees 2 lines of points
• Case 4: dangerous!

Case 2

CC2
C1C1 • points lie on a planar conic C and an additional line meeting C

at C∞
• cameras lie on C \ {C∞} not necessarily an ellipse

• Case 2: camera sees 2 lines of points

Case 1 CC1 C2 • points and cameras all lie on a twisted cubic C
• Case 1: camera sees points on a conic

dangerous but unlikely to occur

3D Computer Vision: III. Computing with a Single Camera (p. 65/197) R. Šára, CMP; rev. 13–Dec–2022

▶Three-Point Exterior Orientation Problem (P3P)

Calibrated camera rotation and translation from Perspective images of 3 reference Points.

Problem: Given K and three corresponding pairs
{
(mi, Xi)

}3
i=1

, find R, C by solving

λimi = KR (Xi −C), i = 1, 2, 3 Xi Cartesian

1. Transform vi
def
= K−1mi. Then

λivi = R (Xi −C). (10)

2. If there was no rotation in (10), the situation would look like this

X3X1 v2
X2z1 v1 v3z2

C
d12

3. and we could shoot 3 lines from the given points Xi in given directions vi to get C

4. given C we solve (10) for λi, R

3D Computer Vision: III. Computing with a Single Camera (p. 66/197) R. Šára, CMP; rev. 13–Dec–2022

▶P3P cont’d

If there is rotation R

1. Eliminate R by taking rotation preserves length: ∥Rx∥ = ∥x∥

|λi| · ∥vi∥ = ∥Xi −C∥ def
= zi (11)

2. Consider only angles among vi and apply Cosine Law per triangle
(C,Xi,Xj) i, j = 1, 2, 3, i ̸= j

d2ij = z2i + z2j − 2 zi zj cij ,

zi = ∥Xi −C∥, dij = ∥Xj −Xi∥, cij = cos(∠vi vj)

4. Solve the system of 3 quadratic eqs in 3 unknowns zi
[Fischler & Bolles, 1981]

there may be no real root

there are up to 4 solutions that cannot be ignored (verify on additional points)

5. Compute C by trilateration (3-sphere intersection) from Xi and zi; then λi

from (11)

6. Compute R from (10) we will solve this problem next →70

X3X1 v2
X2z1 v1 v3z2

C
d12

Similar problems (P4P with unknown f) at http://aag.ciirc.cvut.cz/minimal/ (papers, code)

3D Computer Vision: III. Computing with a Single Camera (p. 67/197) R. Šára, CMP; rev. 13–Dec–2022

http://aag.ciirc.cvut.cz/minimal/

Degenerate (Critical) Configurations for Exterior Orientation

X1X3 X2C no solution

1. C cocyclic with (X1, X2, X3) camera sees points on a line

X1X3 X2
C unstable solution

• center of projection C located on the orthogonal circular cylinder with base
circumscribing the three points Xi

unstable: a small change of Xi results in a large change of C
can be detected by error propagation

degenerate

• camera C is coplanar with points (X1, X2, X3) but is not on the
circumscribed circle of (X1, X2, X3) camera sees points on a line

• additional critical configurations depend on the quadratic equations solver [Haralick et al. IJCV 1994]

3D Computer Vision: III. Computing with a Single Camera (p. 68/197) R. Šára, CMP; rev. 13–Dec–2022

▶Populating A Little ZOO of Minimal Geometric Problems in CV

problem given unknown slide

camera resection 6 world–image correspondences
{
(Xi, mi)

}6
i=1

P →62

exterior orientation K, 3 world–image correspondences
{
(Xi, mi)

}3
i=1

R, C →66

relative orientation 3 world-world correspondences
{
(Xi, Yi)

}3
i=1

R, t →70

• camera resection and exterior orientation are similar problems in a sense:
• we do resectioning when our camera is uncalibrated
• we do orientation when our camera is calibrated

• relative orientation involves no camera (see next) it is a recurring problem in 3D vision

• more problems to come

3D Computer Vision: III. Computing with a Single Camera (p. 69/197) R. Šára, CMP; rev. 13–Dec–2022

▶The Relative Orientation Problem

Problem: Given point triples (X1, X2, X3) and (Y1, Y2, Y3) in a general position in R3 such that the
correspondence Xi ↔ Yi is known, determine the relative orientation (R, t) that maps Xi to Yi, i.e.

Yi = RXi + t, i = 1, 2, 3 .

Applies to:

• 3D scanners

• merging partial reconstructions from different viewpoints

• generalization of the last step of P3P

Obs: Let the centroid be X̄ = 1
3

∑
i Xi and analogically for Ȳ. Then

Ȳ = RX̄+ t.

Therefore

Zi
def
= (Yi − Ȳ) = R(Xi − X̄)

def
= RWi

If all dot products are equal, Z⊤
i Zj = W⊤

i Wj for i, j = 1, 2, 3, we have

R∗ =
[
W1 W2 W3

]−1 [
Z1 Z2 Z3

]
Poor man’s solver:

• normalize Wi, Zi to unit length, use the above formula, and then find the closest rotation matrix

• but this is equivalent to a non-optimal objective it ignores errors in vector lengths

3D Computer Vision: III. Computing with a Single Camera (p. 70/197) R. Šára, CMP; rev. 13–Dec–2022

An Optimal Algorithm for Relative Orientation

We setup a minimization problem

R∗ = argmin
R

3∑
i=1

∥Zi −RWi∥2 s.t. R⊤R = I, detR = 1

argmin
R

∑
i

∥Zi −RWi∥2 = argmin
R

∑
i

(
∥Zi∥2 − 2Z⊤

i RWi + ∥Wi∥2
)
= · · · = argmax

R

∑
i

Z⊤
i RWi

Obs 1: Let A : B =
∑

i,j aijbij be the dot-product (Frobenius inner product) over real matrices. Then

A : B = B : A = tr(A⊤B) = vec(A)⊤ vec(B) = a · b

Obs 2: (cyclic property for matrix trace)
tr(ABC) = tr(CAB)

Obs 3: (Zi, Wi are vectors)

Z⊤
i RWi = tr(Z⊤

i RWi)
O2
= tr(WiZ

⊤
i R)

O1
= (ZiW

⊤
i) : R = R : (ZiW

⊤
i)

Let there be SVD of ∑
i

ZiW
⊤
i

def
= M = UDV⊤

Then

R : M = R : (UDV⊤)
O1
= tr(R⊤UDV⊤)

O2
= tr(V⊤R⊤UD)

O1
= (U⊤RV) : D

3D Computer Vision: III. Computing with a Single Camera (p. 71/197) R. Šára, CMP; rev. 13–Dec–2022

cont’d: The Algorithm

We are solving

R∗ = argmax
R

∑
i

Z⊤
i RWi = argmax

R

(
U⊤RV

)
: D

A particular solution is found as follows:
• U⊤RV must be (1) orthogonal, and closest to: (2) diagonal and (3) positive definite D
• Since U, V are orthogonal matrices then the solution to the problem is among R∗ = USV⊤, where S is

diagonal and orthogonal, i.e. one of

± diag(1, 1, 1), ±diag(1,−1,−1), ±diag(−1, 1,−1), ±diag(−1,−1, 1)

• U⊤V is not necessarily positive definite
• We choose S so that (R∗)⊤R∗ = I

Alg:
1. Compute matrix M =

∑
i ZiW

⊤
i .

2. Compute SVD M = UDV⊤.

3. Compute all Rk = USkV
⊤ that give R⊤

k Rk = I.

4. Compute tk = Ȳ −RkX̄.

• The algorithm can be used for more than 3 points
• Triple pairs can be pre-filtered based on motion invariants (lengths, angles)
• Can be used for the last step of the exterior orientation (P3P) problem →66

3D Computer Vision: III. Computing with a Single Camera (p. 72/197) R. Šára, CMP; rev. 13–Dec–2022

Module IV

Computing with a Camera Pair

4.1Camera Motions Inducing Epipolar Geometry, Fundamental and Essential Matrices

4.2Estimating Fundamental Matrix from 7 Correspondences

4.3Estimating Essential Matrix from 5 Correspondences

4.4Triangulation: 3D Point Position from a Pair of Corresponding Points

covered by

[1] [H&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1

[2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630–633

additional references

H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293(5828):133–135, 1981.

3D Computer Vision: IV. Computing with a Camera Pair (p. 73/197) R. Šára, CMP; rev. 13–Dec–2022

▶Geometric Model of a Camera Stereo Pair

Pi =
[
Qi qi

]
= Ki

[
Ri ti

]
= KiRi

[
I −Ci

]
i = 1, 2 →31

Epipolar geometry:

• brings constraints necessary for inter-image matching

• its parametric form encapsulates information about the relative pose of two cameras" �2�1 d2d1
e2e1m1

X
C2l1 m2C1 l2b

two-camera setup

Description

• baseline b joins projection centers C1, C2

b = C2 −C1

• epipole ei ∈ πi is the image of Cj :

e1 ≃ P1C2, e2 ≃ P2C1

• li ∈ πi is the image of optical ray dj , j ̸= i and also the
epipolar plane

ε = (C2, X,C1)

• lj is the epipolar line (‘epipolar’) in image πj induced by mi in
image πi

Epipolar constraint relates m1 and m2: corresponding d2, b, d1 are coplanar a necessary condition →87

3D Computer Vision: IV. Computing with a Camera Pair (p. 74/197) R. Šára, CMP; rev. 13–Dec–2022

Epipolar Geometry Example: Forward Motion

 1

 2 3
 4 5

 6

 7 8 910111213

1415
1617

18

 1
 2 3
 4 5

 6

 7 8 910111213
1415

1617

18

image 1 image 2
• red: correspondences click on the image to see their IDs
• green: epipolar line pairs per correspondence same ID in both images

Epipole is the image of the other camera’s center.
How high was the camera above the floor?

movement2 1 h=?
3D Computer Vision: IV. Computing with a Camera Pair (p. 75/197) R. Šára, CMP; rev. 13–Dec–2022

▶Cross Products and Maps by Skew-Symmetric 3× 3 Matrices

• There is an equivalence b×m = [b]×m, where [b]× is a 3× 3 skew-symmetric matrix

[b]× =

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 , assuming b =

b1b2
b3

Some properties

1. [b]⊤× = −[b]× the general antisymmetry property

2. A is skew-symmetric iff x⊤Ax = 0 for all x skew-sym mtx generalizes cross products

3. [b]3× = −∥b∥2 · [b]×
4. ∥[b]×∥F =

√
2 ∥b∥ Frobenius norm (∥A∥F =

√
tr(A⊤A) =

√∑
i,j |aij |

2)

5. rank [b]× = 2 iff ∥b∥ > 0 check minors of [b]×

6. [b]×b = 0

7. eigenvalues of [b]× are (0, λ,−λ)

8. for any 3× 3 regular B : B⊤[Bz]×B = detB [z]× follows from the factoring on →39

9. in particular: if RR⊤ = I then [Rb]× = R[b]×R
⊤

• note that if Rb is rotation about b then Rbb = b

• note [b]× is not a homography; it is not a rotation matrix it is the logarithm of a rotation mtx

3D Computer Vision: IV. Computing with a Camera Pair (p. 76/197) R. Šára, CMP; rev. 13–Dec–2022

▶Expressing Epipolar Constraint Algebraically

"p"b �2�1 d2d1
e2e1m1

X
C2l1 m2C1 l2

Pi =
[
Qi qi

]
= Ki

[
Ri ti

]
, i = 1, 2

defs:
R21 – relative camera rotation, R21 = R2R

⊤
1

t21 – relative camera translation, t21 = t2 − R21t1 = −R2b →74

b – baseline vector (world coordinate system)

remember: C = −Q−1q = −R⊤t →33 and 35

0 = d⊤
2 pε︸︷︷︸
normal of ε

≃ (Q−1
2 m2)

⊤︸ ︷︷ ︸
optical ray

Q⊤
1 l1︸ ︷︷ ︸

optical plane

= m⊤
2 Q−⊤

2 Q⊤
1 (e1 ×m1)︸ ︷︷ ︸

image of ε in π2

= m⊤
2

(
Q−⊤

2 Q⊤
1 [e1]×

)︸ ︷︷ ︸
fundamental matrix F

m1

Epipolar constraint m⊤
2 Fm1 = 0 is a point-line incidence constraint

• point m2 is incident on epipolar line l2 ≃ Fm1

• point m1 is incident on epipolar line l1 ≃ F⊤m2

• Fe1 = F⊤e2 = 0 (non-trivially)
• all epipolars meet at the epipole

e1 ≃ Q1C2 + q1 = Q1C2 −Q1C1 = K1R1b = −K1R1R
⊤
2 t21 = −K1R

⊤
21t21

F = Q−⊤
2 Q⊤

1 [e1]× = Q−⊤
2 Q⊤

1 [−K1R
⊤
21t21]× =

⊛ 1· · · ≃ K−⊤
2 [−t21]×R21K

−1
1 fundamental

E = [−t21]×R21 = [R2b]×︸ ︷︷ ︸
baseline in Cam 2

R21
→76/9
= R21 [R1b]×︸ ︷︷ ︸

baseline in Cam 1

= R21[−R⊤
21t21]× essential

3D Computer Vision: IV. Computing with a Camera Pair (p. 77/197) R. Šára, CMP; rev. 13–Dec–2022

▶The Structure and the Key Properties of the Fundamental Matrix

F = (Q2Q
−1
1︸ ︷︷ ︸

epipolar homography He

)−⊤[e1]× = K−⊤
2 R21K

⊤
1︸ ︷︷ ︸

H−⊤
e

[

left epipole︷︸︸︷
e1]×

→76≃ [

right epipole︷ ︸︸ ︷
Hee1]×He = K−⊤

2 [−t21]×R21︸ ︷︷ ︸
essential matrix E

K−1
1

1. the epipole e1 falls in the nullspace of F: Fe1 = H−⊤
e [e1]×e1 = 0, also e⊤2 F = 0

2. E captures relative camera pose only [Longuet-Higgins 1981]

(the change of the world coordinate system does not change E)[
R′

i t′i
]
=
[
Ri ti

]
·
[
R t
0⊤ 1

]
=
[
RiR Rit+ ti

]
,

then
R′

21 = R′
2R

′
1
⊤

= · · · = R21 t′21 = t′2 −R′
21t

′
1 = · · · = t21

3. the translation length t21 is lost since E is homogeneous

4. F maps points to lines and it is not a homography

5. He maps epipoles to epipoles, H−⊤
e epipolar lines to epipolar lines: l2 ≃ H−⊤

e l1

l1

e1

e1 × l1

e1

another epipolar line map: l2 ≃ F[e1]×l1 = F(e1 × l1)

• proof by point/line ‘transmutation’ (left)
• point e1 does not lie on line e1 (dashed): e⊤1 e1 ̸= 0

• F[e1]× is not a homography, unlike H−⊤
e but it does the same job for

epipolar line mapping
• no need to decompose F to obtain He

3D Computer Vision: IV. Computing with a Camera Pair (p. 78/197) R. Šára, CMP; rev. 13–Dec–2022

▶Summary: Relations and Mappings Involving Fundamental Matrix

�2�1 e2e1m1 l1 m2l2
Fm1 0 = m⊤

2 Fm1

e1 ≃ null(F), e2 ≃ null(F⊤)

e1 ≃ H−1
e e2 e2 ≃ Hee1

l1 ≃ F⊤m2 l2 ≃ Fm1

l1 ≃ H⊤
e l2 l2 ≃ H−⊤

e l1

l1 ≃ F⊤[e2]×l2 l2 ≃ F[e1]×l1

m⊤
2 Fm1 = 0m1 m2

l1l2

F⊤F

H−⊤
e or F [e1]×

H⊤
e or F⊤[e2]×

• F[e1]× maps epipolar lines to epipolar lines but it is not a
homography

• He = Q2Q
−1
1 is the epipolar homography→78

H−⊤
e maps epipolar lines to epipolar lines, where

He = Q2Q
−1
1 = K2R21K

−1
1

you have seen this →59

3D Computer Vision: IV. Computing with a Camera Pair (p. 79/197) R. Šára, CMP; rev. 13–Dec–2022

▶Representation Theorem for Fundamental Matrices

Def: F is fundamental when F ≃ H−⊤[e1]×, where H is regular and e1 ≃ nullF ̸= 0.

Theorem: A 3× 3 matrix A is fundamental iff it is of rank 2.

Proof.
Direct: By the geometry, H is full-rank, e1 ̸= 0, hence H−⊤[e1]× is a 3× 3 matrix of rank 2.

Converse:

1. let A = UDV⊤ be the SVD of A of rank 2; then D = diag(λ1, λ2, 0), λ1 ≥ λ2 > 0

2. we write D = BC, where B = diag(λ1, λ2, λ3), C = diag(1, 1, 0), λ3 > 0

3. then A = UBCV⊤ = UBCWW⊤︸ ︷︷ ︸
I

V⊤ with W rotation matrix

4. we look for a rotation mtx W that maps C to a skew-symmetric S, i.e. S = CW, if any

5. then W =

 0 α 0
−α 0 0
0 0 1

, |α| = 1, and S = CW =

1 0 0
0 1 0
0 0 0

 0 α 0
−α 0 0
0 0 1

 = · · · = [s]×, where s = (0, 0, 1)

6. we write v3 – 3rd column of V, u3 – 3rd column of U

A = UB[s]×W⊤V⊤ =
⊛ 1· · · = UB(VW)⊤︸ ︷︷ ︸

≃H−⊤

[v3]×
→76/9
≃ [Hv3]×︸ ︷︷ ︸

≃[u3]×

H, (12)

7. H regular, Av3 = 0, u3A = 0 for v3 ̸= 0, u3 ̸= 0 ⊓⊔
• we also got a (non-unique: α, λ3) decomposition formula for fundamental matrices
• it follows there is no constraint on F except for the rank

3D Computer Vision: IV. Computing with a Camera Pair (p. 80/197) R. Šára, CMP; rev. 13–Dec–2022

▶Representation Theorem for Essential Matrices

Theorem

Let E be a 3× 3 matrix with SVD E = UDV⊤. Then E is essential iff D ≃ diag(1, 1, 0).

Proof.

Direct:

If E is an essential matrix, then the epipolar homography matrix is a rotation matrix (→78), hence
H−⊤ ≃ UB(VW)⊤ in (12) must be (1) diagonal, and (2) (λ-scaled) orthogonal.

It follows B = λI. note this fixed the missing λ3 in (12)

Then
R21 = H−⊤ ≃ UW⊤V⊤ ≃ UWV⊤

Converse:

E is fundamental with
D = diag(λ, λ, 0) = λI︸︷︷︸

B

diag(1, 1, 0)︸ ︷︷ ︸
D

then B = λI in (12) and U(VW)⊤ is orthogonal, as required. ⊓⊔

3D Computer Vision: IV. Computing with a Camera Pair (p. 81/197) R. Šára, CMP; rev. 13–Dec–2022

▶Essential Matrix Decomposition

We are decomposing E to E ≃ [u3]×H ≃ [−t21]×R21 = R21[−R⊤
21t21]× ≃ H−⊤[v3]× [H&Z, sec. 9.6]

1. compute SVD of E = UDV⊤ and verify D = λdiag(1, 1, 0)

2. ensure U, V are rotation matrices by U 7→ det(U)U, V 7→ det(V)V

3. compute

R21 = U

 0 α 0
−α 0 0
0 0 1

︸ ︷︷ ︸

W

V⊤, t21
(12)
= −β u3, |α| = 1, β ̸= 0 (13)

Notes
• v3 ≃ R⊤

21t21 by (12), hence R21v3 ≃ t21 ≃ u3 since it must fall in left null space by E ≃ [u3]×R21

• t21 is recoverable up to scale β and direction signβ

• the result for R21 is unique up to α = ±1 despite non-uniqueness of SVD

• the change of sign in α rotates the solution by 180◦ about t21

R(α) = UWV⊤ ⇒ R(−α) = UW⊤V⊤ ⇒ T = R(−α)R⊤(α) = · · · = U diag(−1,−1, 1)U⊤

which is a rotation by 180◦ about u3 ≃ t21: show that u3 is the rotation axis

U diag(−1,−1, 1)U⊤u3 = U

−1 0 0
0 −1 0
0 0 1

00
1

 = u3

• 4 solution sets for 4 sign combinations of α, β see next for geometric interpretation

3D Computer Vision: IV. Computing with a Camera Pair (p. 82/197) R. Šára, CMP; rev. 13–Dec–2022

▶Four Solutions to Essential Matrix Decomposition

Transform the world coordinate system so that the origin is in Camera 2. Then t21 = −b and W rotates about
the baseline b. →77

b C2C1
C1 C2

α, β front− front −α, β (twisted by W) back− front

C1
C2

C1
C2

α, −β (baseline reversal) back− back −α, −β (combination of both) back− front

How to disambiguate?

• use the chirality constraint: all 3D points are in front of both cameras
• this singles-out the upper left case: front-front [H&Z, Sec. 9.6.3]

3D Computer Vision: IV. Computing with a Camera Pair (p. 83/197) R. Šára, CMP; rev. 13–Dec–2022

▶7-Point Algorithm for Estimating Fundamental Matrix

Problem: Given a set {(xi, yi)}ki=1 of k = 7 finite correspondences, estimate f. m. F.

y⊤
i Fxi = 0, i = 1, . . . , k, known: xi = (u1

i , v
1
i , 1), yi = (u2

i , v
2
i , 1)

terminology: correspondence = truth, later: match = algorithm’s result; hypothesized corresp.

Solution:

y⊤
i Fxi = (yix

⊤
i) : F =

(
vec(yix

⊤
i)
)⊤

vec(F), rotation property of matrix trace →71

vec(F) =
[
f11 f21 f31 . . . f33

]⊤∈ R9
column vector from matrix

D =

(
vec(y1x

⊤
1)
)⊤(

vec(y2x
⊤
2)
)⊤(

vec(y3x
⊤
3)
)⊤

...(
vec(ykx

⊤
k)
)⊤

 =

u1
1u

2
1 u1

1v
2
1 u1

1 u2
1v

1
1 v11v

2
1 v11 u2

1 v21 1
u1
2u

2
2 u1

2v
2
2 u1

2 u2
2v

1
2 v12v

2
2 v12 u2

2 v22 1
u1
3u

2
3 u1

3v
2
3 u1

3 u2
3v

1
3 v13v

2
3 v13 u2

3 v23 1
...

...
u1
ku

2
k u1

kv
2
k u1

k u2
kv

1
k v1kv

2
k v1k u2

k v2k 1

 ∈ Rk,9

D vec(F) = 0

3D Computer Vision: IV. Computing with a Camera Pair (p. 84/197) R. Šára, CMP; rev. 13–Dec–2022

▶7-Point Algorithm Continued

D vec(F) = 0, D ∈ Rk,9

• for k = 7 we have a rank-deficient system, the null-space of D is 2-dimensional

• but we know that detF = 0, hence
1. find a basis of the null space of D: F1, F2 by SVD or QR factorization

2. get up to 3 real solutions for α from

det(αF1 + (1− α)F2) = 0 cubic equation in α

3. get up to 3 fundamental matrices Fi = αiF1 + (1− αi)F2

4. if rankFi < 2 for all i = 1, 2, 3 then fail

• the result may depend on image (domain) transformations
• normalization improves conditioning →92

• this gives a good starting point for the full algorithm →111

• dealing with mismatches need not be a part of the 7-point algorithm →114

3D Computer Vision: IV. Computing with a Camera Pair (p. 85/197) R. Šára, CMP; rev. 13–Dec–2022

▶Degenerate Configurations for Fundamental Matrix Estimation

When is F not uniquely determined from any number of correspondences? [H&Z, Sec. 11.9]

1. when images are related by homography

a) camera centers coincide t21 = 0: H = K2R21K
−1
1 H – as in epipolar homography

b) camera moves but all 3D points lie in a plane (n, d): H = K2(R21 − t21n⊤/d)K−1
1

• in either case: epipolar geometry is not defined
• we get an arbitrary solution from the 7-point algorithm, in the form of F = [s]×H

note that [s]×H ≃ H′[s′]× →76

s

yi ≃ Hxixi
li

• given (arbitrary, fixed) point s
• and correspondence xi ↔ yi
• yi is the image of xi: yi ≃ Hxi
• a necessary condition: yi ∈ li, li ≃ s×Hxi

0 = y⊤
i (s×Hxi) = y⊤

i [s]×Hxi for any xi,yi, s (!)

2. both camera centers and all 3D points lie on a ruled quadric
hyperboloid of one sheet, cones, cylinders, two planes

• there are 3 solutions for F

notes
• estimation of E can deal with planes: [s]×H is essential, then H = R− tn⊤/d, and s≃ t not arbitrary

• a complete treatment with additional degenerate configurations in [H&Z, sec. 22.2]
• a stronger epipolar constraint could reject some configurations (see next)

3D Computer Vision: IV. Computing with a Camera Pair (p. 86/197) R. Šára, CMP; rev. 13–Dec–2022

A Note on Oriented Epipolar Constraint

• a tighter epipolar constraint that preserves orientations
• requires all points and cameras be on the same side of the plane at infinity"

b �2�1 d2d1
e2e1m1

X
C2l1 m2C1 l2 (e2 ×m2) +∼ Fm1

notation: m +∼ n means m= λn, λ > 0

• we can read the constraint as (e2 ×m2) +∼ H−⊤
e (e1 ×m1)

• note that the constraint is not invariant to the change of either sign of mi

• all 7 correspondence in 7-point alg. must have the same sign see later

• this may help reject some wrong matches, see →114 [Chum et al. 2004]

• an even more tight constraint: scene points in front of both cameras expensive

this is called chirality constraint

3D Computer Vision: IV. Computing with a Camera Pair (p. 87/197) R. Šára, CMP; rev. 13–Dec–2022

▶5-Point Algorithm for Relative Camera Orientation

Problem: Given {mi, m
′
i}5i=1 corresponding image points and calibration matrix K, recover the camera motion

R, t.

Obs:
1. E – homogeneous 3× 3 matrix; 9 numbers up to scale

2. R – 3DOF, t – 2DOF only, in total 5DOF → we need 9− 1− 5 = 3 constraints on E

3. idea: E essential iff it has two equal singular values and the third is zero →81

This gives an equation system:

v⊤
i Ev′

i = 0 5 linear constraints (v ≃ K−1m)

detE = 0 1 cubic constraint

EE⊤E− 1

2
tr(EE⊤)E = 0 9 cubic constraints, 2 independent

⊛ P1; 1pt: verify the last equation from E = UDV⊤, D = λ diag(1, 1, 0)

1. estimate E by SVD from v⊤
i Ev′

i = 0 by the null-space method 4D null space

2. this gives E ≃ xE1 + yE2 + zE3 +E4

3. at most 10 (complex) solutions for x, y, z from the cubic constraints

• when all 3D points lie on a plane: at most 2 real solutions (twisted-pair) can be disambiguated in 3 views

or by chirality constraint (→83) unless all 3D points are closer to one camera

• 6-point problem for unknown f [Kukelova et al. BMVC 2008]

• resources at http://aag.ciirc.cvut.cz/minimal/

3D Computer Vision: IV. Computing with a Camera Pair (p. 88/197) R. Šára, CMP; rev. 13–Dec–2022

http://aag.ciirc.cvut.cz/minimal/

▶The Triangulation Problem

Problem: Given cameras P1, P2 and a correspondence x ↔ y compute a 3D point X projecting to x and y

λ1 x= P1X , λ2 y = P2X , x=

u1

v1

1

 , y =

u2

v2

1

 , Pi =

(pi
1)

⊤

(pi
2)

⊤

(pi
3)

⊤

Linear triangulation method after eliminating λ1, λ2

u1 (p1
3)

⊤X= (p1
1)

⊤X, u2 (p2
3)

⊤X= (p2
1)

⊤X,

v1 (p1
3)

⊤X= (p1
2)

⊤X, v2 (p2
3)

⊤X= (p2
2)

⊤X

Gives

DX= 0, D =

u1 (p1

3)
⊤ − (p1

1)
⊤

v1 (p1
3)

⊤ − (p1
2)

⊤

u2 (p2
3)

⊤ − (p2
1)

⊤

v2 (p2
3)

⊤ − (p2
2)

⊤

 , D ∈ R4,4, X ∈ R4 (14)

• typically, D has full rank (!)
• what else: back-projected rays will generally not intersect due to image error, see next
• what else: using Jack-knife (→63) not recommended sensitive to small error

• idea: we will step back and use SVD (→90)
• but the result will not be invariant to projective frame

replacing P1 7→ P1H, P2 7→ P2H does not always result in X 7→ H−1X

• note the homogeneous form in (14) can represent points X at infinity

3D Computer Vision: IV. Computing with a Camera Pair (p. 89/197) R. Šára, CMP; rev. 13–Dec–2022

▶The Least-Squares Triangulation by SVD

• if D is full-rank we may minimize the algebraic least-squares error

ε2(X) = ∥DX∥2 s.t. ∥X∥ = 1, X ∈ R4

• let di be the i-th row of D taken as a column vector, then

∥DX∥2=
4∑

i=1

(d⊤
i X)2 =

4∑
i=1

X⊤did
⊤
i X= X⊤QX, where Q =

4∑
i=1

did
⊤
i = D⊤D ∈ R4,4

• we write the SVD of Q as Q =

4∑
j=1

σ2
j uju

⊤
j , in which [Golub & van Loan 2013, Sec. 2.5]

σ2
1 ≥ · · · ≥ σ2

4 ≥ 0 and u⊤
l um =

{
0 if l ̸= m

1 otherwise

• then min
q,∥q∥=1

q⊤Qq = σ2
4 and X= arg min

q,∥q∥=1
q⊤Qq = u4 u4 – the last column of U from SVD(Q)

Proof (by contradiction).

Let q̄ =
4∑

i=1

aiui s.t.
4∑

i=1

a2i = 1, then ∥q̄∥ = 1, as desired, and

q̄⊤Qq̄ =

4∑
j=1

σ2
j q̄⊤uj u

⊤
j q̄ =

4∑
j=1

σ2
j (u⊤

j q̄)2 = · · · =
4∑

j=1

a2jσ
2
j ≥

4∑
j=1

a2jσ
2
4 =

 4∑
j=1

a2j

σ2
4 = σ2

4

since σj ≥ σ4 ⊓⊔
3D Computer Vision: IV. Computing with a Camera Pair (p. 90/197) R. Šára, CMP; rev. 13–Dec–2022

▶cont’d

• if σ4 ≪ σ3, there is a unique solution X= u4 with residual error (DX)2 = σ2
4

the quality (conditioning) of the solution may be expressed as q = σ3/σ4 (greater is better)

Matlab code for the least-squares solver:

[U,O,V] = svd(D);

X = V(:,end);

q = sqrt(O(end-1,end-1)/O(end,end));

⊛ P1; 1pt: Why did we decompose D here, and not Q = D⊤D?

3D Computer Vision: IV. Computing with a Camera Pair (p. 91/197) R. Šára, CMP; rev. 13–Dec–2022

▶Numerical Conditioning

• The equation DX= 0 in (14) may be ill-conditioned for numerical computation,
which results in a poor estimate for X.

Why: on a row of D there are big entries together with small entries, e.g. of orders
projection centers in mm, image points in px

103 0 103 106

0 103 103 106

103 0 103 106

0 103 103 106

Quick fix:

1. re-scale the problem by a regular diagonal conditioning matrix S ∈ R4,4

0 = DX= DSS−1X= D̄ X̄

choose S to make the entries in D̂ all smaller than unity in absolute value:

S = diag(10−3, 10−3, 10−3, 10−6) S = diag(1./max(abs(D), [], 1))

2. solve for X̄ as before
3. get the final solution as X= S X̄

• when SVD is used in camera resection, conditioning is essential for success →62

3D Computer Vision: IV. Computing with a Camera Pair (p. 92/197) R. Šára, CMP; rev. 13–Dec–2022

Algebraic Error vs Reprojection Error

• algebraic error (c – camera index, (uc, vc) – image coordinates) from SVD →91

ε
2
(X) = σ

2
4 =

2∑
c=1

[(
u
c
(p

c
3)

⊤
X− (p

c
1)

⊤
X
)2

+
(
v
c
(p

c
3)

⊤
X− (p

c
2)

⊤
X
)2
]

• reprojection error
e
2
(X) =

2∑
c=1

[(
u
c − (pc

1)
⊤X

(pc
3)

⊤X

)2

+

(
v
c − (pc

2)
⊤X

(pc
3)

⊤X

)2]
• algebraic error zero ⇔ reprojection error zero σ4 = 0 ⇒ non-trivial null space

• epipolar constraint satisfied ⇒ equivalent results
• in general: minimizing algebraic error is cheap but it gives inferior results
• minimizing reprojection error is expensive but it gives good results
• the midpoint of the common perpendicular to both optical rays gives about 50% greater error in 3D
• the golden standard method – deferred to →106

Ex: • forward camera motion
• error f/50 in image 2, orthogonal to epipolar plane

XT – noiseless ground truth position
Xr – reprojection error minimizer
Xa – algebraic error minimizer
m – measurement (mT with noise in v2)

3D Computer Vision: IV. Computing with a Camera Pair (p. 93/197) R. Šára, CMP; rev. 13–Dec–2022

▶We Have Added to The ZOO (cont’d from →69)

problem given unknown slide

camera resection 6 world–img correspondences
{
(Xi, mi)

}6
i=1

P 62

exterior orientation K, 3 world–img correspondences
{
(Xi, mi)

}3
i=1

R, t 66

relative pointcloud
orientation

3 world-world correspondences
{
(Xi, Yi)

}3
i=1

R, t 70

fundamental matrix 7 img–img correspondences
{
(mi, m

′
i)
}7
i=1

F 84

relative camera
orientation

K, 5 img–img correspondences
{
(mi, m

′
i)
}5
i=1

R, t 88

triangulation P1, P2, 1 img–img correspondence (mi, m
′
i) X 89

A bigger ZOO at http://aag.ciirc.cvut.cz/minimal/
calibrated problems

• have fewer degenerate configurations
• can do with fewer points (good for geometry proposal generators →121)

• algebraic error optimization (SVD) makes sense in camera resection and triangulation only
• but it is not the best method; we will now focus on ‘optimizing optimally’

3D Computer Vision: IV. Computing with a Camera Pair (p. 94/197) R. Šára, CMP; rev. 13–Dec–2022

http://aag.ciirc.cvut.cz/minimal/

Module V

Optimization for 3D Vision

5.1The Concept of Error for Epipolar Geometry
5.2The Golden Standard for Triangulation
5.3 Levenberg-Marquardt’s Iterative Optimization
5.4Optimizing Fundamental Matrix
5.5The Correspondence Problem
5.6Optimization by Random Sampling

covered by

[1] [H&Z] Secs: 11.4, 11.6, 4.7

[2] Fischler, M.A. and Bolles, R.C . Random Sample Consensus: A Paradigm for Model Fitting with Applications
to Image Analysis and Automated Cartography. Communications of the ACM 24(6):381–395, 1981

additional references

P. D. Sampson. Fitting conic sections to ‘very scattered’ data: An iterative refinement of the Bookstein algorithm. Computer Vision,

Graphics, and Image Processing, 18:97–108, 1982.

O. Chum, J. Matas, and J. Kittler. Locally optimized RANSAC. In Proc DAGM, LNCS 2781:236–243. Springer-Verlag, 2003.

O. Chum, T. Werner, and J. Matas. Epipolar geometry estimation via RANSAC benefits from the oriented epipolar constraint. In Proc

ICPR, vol 1:112–115, 2004.

3D Computer Vision: V. Optimization for 3D Vision (p. 95/197) R. Šára, CMP; rev. 13–Dec–2022

▶The Concept of Error for Epipolar Geometry

Background problems: (1) Given at least 8 matched points xi ↔ yj in a general position, estimate the most ‘likely’
fundamental matrix F; (2) given F triangulate 3D point from xi ↔ yj .

xi = (u1
i , v

1
i), yi = (u2

i , v
2
i), i = 1, 2, . . . , k, k ≥ 8

F

x̂i

ŷi
xi

yi

image 1 image 2

• detected points (measurements) xi, yi
• we introduce matches Zi = (xi,yi) = (u1

i , v
1
i , u

2
i , v

2
i) ∈ R4; and the set Z =

{
Zi

}k
i=1

• corrected points x̂i, ŷi; Ẑi = (x̂i, x̂i) = (û1
i , v̂

1
i , û

2
i , v̂

2
i); Ẑ =

{
Ẑi

}k
i=1

are correspondences

• correspondences satisfy the epipolar geometry exactly ŷ⊤
i
F x̂i = 0, i = 1, . . . , k

• small correction is more probable
• let ei(·) be the ‘reprojection error’ (vector) per match i,

ei(xi, yi | x̂i, ŷi,F) =

[
xi − x̂i

yi − ŷi

]
= ei(Zi | Ẑi,F) = Zi − Ẑi(F)

∥ei(·)∥2
def
= e2

i (·) = ∥xi − x̂i∥2 + ∥yi − ŷi∥
2 = ∥Zi − Ẑi(F)∥2

(15)

3D Computer Vision: V. Optimization for 3D Vision (p. 96/197) R. Šára, CMP; rev. 13–Dec–2022

▶cont’d

• the total reprojection error (of all data) then is

L(Z | Ẑ,F) =
k∑

i=1

e2
i (xi, yi | x̂i, ŷi,F) =

k∑
i=1

e2
i (Zi | Ẑi,F)

• and the optimization problem is

(Ẑ∗,F∗) = argmin
F,Ẑ

L(Z | Ẑ,F) s.t. rankF = 2, ŷ⊤
i
F x̂i = 0, (x̂i, ŷi) ∈ Ẑi (16)

Three possible approaches

• they differ in how the correspondences x̂i, ŷi are obtained:

1. direct optimization of reprojection error over all variables Ẑ, F →98

2. Sampson optimal correction = partial correction of Zi towards Ẑi used in an iterative minimization over F →100

3. removing x̂i, ŷi altogether = marginalization of L(Z, Ẑ | F) over Ẑ followed by minimization over F
not covered, the marginalization is difficult

3D Computer Vision: V. Optimization for 3D Vision (p. 97/197) R. Šára, CMP; rev. 13–Dec–2022

Method 1: Reprojection Error Optimization: Idea

• we need to encode the constraints ŷ
i
F x̂i = 0, rankF = 2

• idea: reconstruct 3D point via equivalent projection matrices and use reprojection error

• the equivalent projection matrices are see [H&Z,Sec. 9.5] for complete characterization

P1 =
[
I 0

]
, P2 =

[
[e2]×F+ e2e

⊤
1 e2

]
(17)

⊛ H3; 2pt: Given rank-2 matrix F, let e1, e2 be the right and left nullspace basis vectors of F, respectively. Verify that such F is a

fundamental matrix of P1, P2 from (17).

Hints:

(1) consider x̂i = P1Xi and ŷ
i
= P2Xi

(2) A is skew symmetric iff x⊤Ax = 0 for all vectors x.

3D Computer Vision: V. Optimization for 3D Vision (p. 98/197) R. Šára, CMP; rev. 13–Dec–2022

(cont’d) Reprojection Error Optimization: Algorithm

1. compute F(0) by the 7-point algorithm →84; construct camera P
(0)
2 from F(0) using (17)

2. triangulate 3D points X̂
(0)

i from matches (xi, yi) for all i = 1, . . . , k →89

3. starting from P
(0)
2 , X̂

(0)

1:k minimize the reprojection error (15)

(X̂
∗
1:k,F

∗) = arg min
F, X̂1:k

k∑
i=1

e2
i (Zi | Ẑi(X̂i,P2(F)))

where
Ẑi = (x̂i, ŷi) (Cartesian), x̂i ≃ P1X̂i, ŷi ≃ P2(F) X̂i (homogeneous)

• non-linear, non-convex problem
• solves F estimation and triangulation of all k points jointly
• the solver would be quite slow
• 3k + 7 parameters to be found: latent: X̂i, for all i (correspondences!), non-latent: F

• we need minimal representations for X̂i and F →151 or introduce constraints
• there are other pitfalls; this is essentially bundle adjustment; we will return to this later →139

3D Computer Vision: V. Optimization for 3D Vision (p. 99/197) R. Šára, CMP; rev. 13–Dec–2022

▶Method 2: First-Order Error Approximation

An elegant method for solving problems like (16):

• we will get rid of the latent parameters X̂ needed for obtaining the correction
[H&Z, p. 287], [Sampson 1982]

• we will recycle the algebraic error ε = y⊤Fx from →84

• consider matches Zi, correspondences Ẑi, and reprojection error ei = ∥Zi − Ẑi∥2

• correspondences satisfy ŷi
⊤F x̂i = 0, x̂i = (û1, v̂1, 1), ŷi = (û2, v̂2, 1)

• this is a manifold VF ∈ R4: a set of points Ẑ = (û1, v̂1, û2, v̂2) consistent with F

• algebraic error vanishes for Ẑi: 0 = εi(Ẑi) = ŷi
⊤F x̂i

L

VF

ei(Ẑi,Zi)
Ẑi

Zi Sampson’s idea: Linearize the algebraic error ε(Z) at Zi (where it is non-zero) and

evaluate the resulting linear function at Ẑi (where it is zero). The zero-crossing
replaces VF by a linear manifold L. The point on VF closest to Zi is replaced by the
closest point on L.

0 = εi(Ẑi) ≈ εi(Zi) +
∂εi(Zi)

∂Zi
(Ẑi − Zi)

3D Computer Vision: V. Optimization for 3D Vision (p. 100/197) R. Šára, CMP; rev. 13–Dec–2022

▶Sampson’s Approximation of Reprojection Error

• linearize ε(Z) at match Zi, evaluate it at correspondence Ẑi

εi(Zi) +
∂εi(Zi)

∂Zi︸ ︷︷ ︸
Ji(Zi)

(Ẑi − Zi)︸ ︷︷ ︸
ei(Ẑi,Zi)

def
= εi(Zi)︸ ︷︷ ︸

given

+Ji(Zi) ei(Ẑi,Zi)︸ ︷︷ ︸
wanted

= εi(Ẑi)
!
= 0

• goal: compute function ei(·) from εi(·), where ei(·) is the distance of Ẑi from Zi

• we have a linear underconstrained equation for ei(·) e.g. εi ∈ R, ei ∈ R4

• we look for a minimal ei(·) per match i

ei(·)∗ = argmin
ei(·)

∥ei(·)∥2 subject to εi(·) + Ji(·) ei(·) = 0

• which has a closed-form solution note that Ji(·) is not invertible! ⊛ P1; 1pt: derive e∗i (·)

e∗
i (·) = −J⊤

i (JiJ
⊤
i)

−1εi(·) pseudo-inverse

∥e∗
i (·)∥2 = ε⊤

i (·)(JiJ
⊤
i)

−1εi(·)
(18)

• this maps εi(·) to an estimate of ei(·) per correspondence
• we often do not need ei, just ∥ei∥2 exception: triangulation →106

• the unknown parameters F are inside: ei = ei(F), εi = εi(F), Ji = Ji(F)

3D Computer Vision: V. Optimization for 3D Vision (p. 101/197) R. Šára, CMP; rev. 13–Dec–2022

▶Example: Fitting A Circle To Scattered Points

Problem: Fit an origin-centered circle C : ∥x∥2 − r2 = 0 to a set of 2D points Z = {xi}ki=1

1. consider radial error as the ‘algebraic error’ ε(x) = ∥x∥2 − r2 ‘arbitrary’ choice

2. linearize it at x̂ we are dropping i in εi, ei etc for clarity

ε(x̂) ≈ ε(x) +
∂ε(x)

∂x︸ ︷︷ ︸
J(x)=2x⊤

(x̂− x)︸ ︷︷ ︸
e(x̂,x)

= · · · = 2x⊤x̂− (r2 + ∥x∥2) def
= εL(x̂)

εL(x̂) = 0 is a line with normal x
∥x∥ and intercept r2+∥x∥2

2∥x∥ not tangent to C, outside!

3. using (18), express error approximation e∗ as

∥e∗∥2 = ε⊤(JJ⊤)−1ε =
(∥x∥2 − r2)2

4∥x∥2

4. fit circle

x2

x1

ε(x) = 0

VC

εL1(x) = 0

εL2(x) = 0

x̂1

r∗ = argmin
r

k∑
i=1

(∥xi∥2 − r2)2

4∥xi∥2
= · · · =

(
1

k

k∑
i=1

1

∥xi∥2

)− 1
2

• this example results in a convex quadratic optimization problem

• note that the algebraic error minimizer is different:

argmin
r

k∑
i=1

(∥xi∥2 − r2)2 =

(
1

k

k∑
i=1

∥xi∥2
) 1

2

3D Computer Vision: V. Optimization for 3D Vision (p. 102/197) R. Šára, CMP; rev. 13–Dec–2022

Circle Fitting: Some Results

medium radial noise big radial noise medium isotropic noise big isotropic noise

opt: 1.8, Smp: 1.9, dir: 2.3 1.6, 1.8, 2.6 1.8, . . .2.0, 2.2 1.6, . . .2.0, 2.4
mean ranks over 10 000 random trials with k = 32 samples; smaller is better

solid green – ground truth

solid red – Sampson error e minimizer

solid blue – direct algebraic radial error ε minimizer

dashed black – optimal estimator for isotropic error

optimal estimator for isotropic error (black, dashed):

r ≈ 3

4k

k∑
i=1

∥xi∥ +

√√√√(3

4k

k∑
i=1

∥xi∥
)2

− 1

2k

k∑
i=1

∥xi∥2

which method is better?
• error should model noise, radial noise and isotropic noise behave differently

• ground truth: Normally distributed isotropic error, Gamma-distributed radial error

• Sampson: better for the radial distribution model; Direct:better for the isotropic model

• no matter how corrected, the algebraic error minimizer is not an unbiased parameter estimator
Cramér-Rao bound tells us how close one can get with unbiased estimator and given k

3D Computer Vision: V. Optimization for 3D Vision (p. 103/197) R. Šára, CMP; rev. 13–Dec–2022

Discussion: On The Art of Probabilistic Model Design. . .

• a few probabilistic models for fitting zero-centered circle C of radius r to points in R2

marginalized over C orthogonal deviation from C Sampson approximation
er
ro
r
m
o
d
el x

N(0, σ2I)
x

Γ(·, ·) x
N(0, σ2I)

ra
d
ia
l
p
.d
.f
.

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

||x||

p
(|

|x
||
 |
 r

 =
 1

)

σ = 0.25

σ = 0.5

σ = 1

σ = 2

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

||x||

p
(|

|x
||
 |
 r

 =
 1

)

σ = 0.25

σ = 0.5

σ = 1

σ = 2

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

||x||

p
(|

|x
||
 |
 r

 =
 1

)

σ = 0.25

σ = 0.5

σ = 1

σ = 2

ra
n
d
o
m

sa
m
p
le

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

p
(x

|r
)

≈ 1

σ
√

(2π)3r ∥x∥
e
− (∥x∥−r)2

2σ2 1

2πΓ(r2

σ
)

1
∥x∥2

(
r∥x∥
σ

) r2

σ
e−

r∥x∥
σ 1

rσ
√

(2π)3
e
− e2(x;r)

2σ2

•mode inside the circle • peak at the center •mode at the circle
•models the inside well • unusable for small radii • hole at the center
• tends to normal distribution • tends to Dirac distribution • tends to normal distribution

3D Computer Vision: V. Optimization for 3D Vision (p. 104/197) R. Šára, CMP; rev. 13–Dec–2022

▶Sampson Error for Fundamental Matrix Manifold

The epipolar algebraic error is assuming finite points

εi(F) = y⊤
i Fxi, xi = (u1

i , v
1
i , 1), yi = (u2

i , v
2
i , 1), εi ∈ R

Let F =
[
F1 F2 F3

]
(per columns) =

(F1)⊤

(F2)⊤

(F3)⊤

 (per rows), S =

[
1 0 0
0 1 0

]
, then

Sampson

Ji(F) =

[
∂εi(F)

∂u1
i

,
∂εi(F)

∂v1i
,
∂εi(F)

∂u2
i

,
∂εi(F)

∂v2i

]
Ji ∈ R1,4 derivatives over

point coordinates

=
[
(F1)

⊤yi, (F2)
⊤yi, (F1)⊤xi, (F2)⊤xi

]
=

[
SF⊤yi

SFxi

]⊤
ei(F) = −

J⊤
i (F) εi(F)

∥Ji(F)∥2
ei(F) ∈ R4 Sampson error vector

ei(F)
def
= ∥ei(F)∥ =

εi(F)

∥Ji(F)∥
=

y⊤
i Fxi√

∥SFxi∥2 + ∥SF⊤yi∥2
ei(F) ∈ R scalar Sampson error

• generalization for infinite points is easy
• Sampson error ‘normalizes’ the algebraic error
• automatically copes with multiplicative factors F 7→ λF
• actual optimization not yet covered →110

3D Computer Vision: V. Optimization for 3D Vision (p. 105/197) R. Šára, CMP; rev. 13–Dec–2022

▶Back to Triangulation: The Golden Standard Method

Given P1, P2 and a correspondence x ↔ y, look for 3D point X projecting to x and y →89

Idea:
1. if not given, compute F from P1, P2, e.g. F = (Q1Q

−1
2)⊤[q1 − (Q1Q

−1
2)q2]× →77

2. correct the measurement by the linear estimate of the correction vector →101
û1

v̂1

û2

v̂2

 ≈

u1

v1

u2

v2

−
ε

∥J∥2
J⊤ =

u1

v1

u2

v2

−
y⊤Fx

∥SFx∥2 + ∥SF⊤y∥2

(F1)⊤y

(F2)⊤y

(F1)⊤x
(F2)⊤x

3. use the SVD triangulation algorithm with numerical conditioning →90

Ex (cont’d from →93):

XT – noiseless ground truth position
• – reprojection error minimizer

Xs – Sampson-corrected algebraic error minimizer
Xa – algebraic error minimizer
m – measurement (mT with noise in v2)

3D Computer Vision: V. Optimization for 3D Vision (p. 106/197) R. Šára, CMP; rev. 13–Dec–2022

▶Back to Fundamental Matrix Estimation

Goal: Given a set X = {(xi, yi)}ki=1 of k ≫ 7 inlier correspondences, compute a statistically efficient estimate for
fundamental matrix F.

What we have so far

• 7-point algorithm for F (5-point algorithm for E) →84

• definition of Sampson error per correspondence ei(F | xi, yi) →105

• triangulation requiring an optimal F

What we need

• correspondence recognition see later →114

• an optimization algorithm for many (k ≫ 7) correspondences comes next

F∗ = argmin
F

k∑
i=1

e2i (F | X)

• the 7-point estimate is a good starting point F0

3D Computer Vision: V. Optimization for 3D Vision (p. 107/197) R. Šára, CMP; rev. 13–Dec–2022

Levenberg-Marquardt (LM) Iterative Optimization in a Nutshell

Consider error function ei(θ) = f(xi,yi,θ) ∈ Rm, with xi,yi given, θ ∈ Rq unknown
θ = F, q = 9, m = 1 for f.m. estimation

Our goal: θ∗ = argmin
θ

k∑
i=1

∥ei(θ)∥2

Idea 1 (Gauss-Newton approximation): proceed iteratively for s = 0, 1, 2, . . .

θs+1 := θs + ds , where ds = argmin
d

k∑
i=1

∥ei(θ
s + d)∥2 (19)

ei(θ
s + d) ≈ ei(θ

s) + Li d,

(Li)jl =
∂
(
ei(θ)

)
j

∂(θ)l
, Li ∈ Rm,q

typically a long matrix, m ≪ q

Then the solution to Problem (19) is a set of ‘normal eqs’

−
k∑

i=1

L⊤
i ei(θ

s)︸ ︷︷ ︸
e∈Rq,1

=

(
k∑

i=1

L⊤
i Li

)
︸ ︷︷ ︸

L∈Rq,q

ds, (20)

• ds can be solved for by Gaussian elimination using Choleski decomposition of L
L symmetric PSD ⇒ use Choleski, almost 2× faster than Gauss-Seidel, see bundle adjustment →142

• beware of rank defficiency in L when k is small
• such updates do not lead to stable convergence −→ ideas of Levenberg and Marquardt

3D Computer Vision: V. Optimization for 3D Vision (p. 108/197) R. Šára, CMP; rev. 13–Dec–2022

LM (cont’d)

Idea 2 (Levenberg): replace
∑

i L
⊤
i Li with

∑
i L

⊤
i Li + λ I for some damping factor λ ≥ 0

Idea 3 (Marquardt): replace λ I with λ
∑

i diag(L
⊤
i Li) to adapt to local curvature:

−
k∑

i=1

L⊤
i ei(θ

s) =

(
k∑

i=1

(
L⊤

i Li + λdiag(L⊤
i Li)

))
ds

Idea 4 (Marquardt): adaptive λ small λ → Gauss-Newton, large λ → gradient descend

1. choose λ ≈ 10−3 and compute ds

2. if
∑

i ∥ei(θ
s + ds)∥2 <

∑
i ∥ei(θ

s)∥2 then accept ds and set λ := λ/10, s := s+ 1 better: Armijo’s rule

3. otherwise set λ := 10λ and recompute ds

• sometimes different constants are needed for the 10 and 10−3

• note that Li ∈ Rm,q (long matrix) but each contribution L⊤
i Li is a square singular q × q matrix (always singular for

k < q)

• λ helps avoid the consequences of gauge freedom →144

• the error function can be made robust to outliers →115

• we have approximated the least squares Hessian by ignoring second derivatives of the error function (Gauss-Newton
approximation) See [Triggs et al. 1999, Sec. 4.3]

• modern variants of LM are Trust Region methods

3D Computer Vision: V. Optimization for 3D Vision (p. 109/197) R. Šára, CMP; rev. 13–Dec–2022

LM with Sampson Error for Fundamental Matrix Estimation

Sampson (derived by linearization over point coordinates u1, v1, u2, v2)

ei(F) =
εi

∥Ji∥
=

y⊤
i Fxi√

∥SFxi∥2 + ∥SF⊤yi∥2
where S =

[
1 0 0
0 1 0

]

LM (by linearization over parameters F)

Li =
∂ei(F)

∂F
= · · · = 1

2∥Ji∥

[(
yi −

2ei(F)

∥Ji∥
SFxi

)
x⊤
i + yi

(
xi −

2ei(F)

∥Ji∥
SF⊤yi

)⊤
]

(21)

• Li in (21) is a 3× 3 matrix, must be reshaped to dimension-9 vector vec(Li) to be used in LM

• xi and yi in Sampson error are normalized to unit homogeneous coordinate (21) relies on this

• reinforce rankF = 2 after each LM update to stay on the fundamental matrix manifold and ∥F∥ = 1 to avoid gauge
freedom by SVD →111

• LM linearization could be done by numerical differentiation (we can afford it, we have a small dimension here)

3D Computer Vision: V. Optimization for 3D Vision (p. 110/197) R. Šára, CMP; rev. 13–Dec–2022

▶Local Optimization for Fundamental Matrix Estimation

Summary so far

• Given a set X = {(xi, yi)}ki=1 of k ≫ 7 inlier correspondences, compute a statistically efficient estimate for
fundamental matrix F.

1. Find the conditioned (→92) 7-point F0 (→84) from a suitable 7-tuple

2. Improve the F∗
0 using the LM optimization (→108–109) and the Sampson error (→110) on all inliers, reinforce

rank-2, unit-norm F∗
k after each LM iteration using SVD

Partial conceptualization

• inlier = a correspondence (a true match)

• outlier = a non-correspondence

• binary inlier/outlier labels are hidden

• we can get their likely estimate only, with respect to a model

We are not yet done

• if there are no wrong correspondences (mismatches, outliers), this gives a local optimum given the 7-point initial
estimate

• the algorithm breaks under contamination of (inlier) correspondences by outliers

• the full problem involves finding the inliers!

• in addition, we need a mechanism for jumping out of local minima (and exploring the space of all fundamental matrices)

3D Computer Vision: V. Optimization for 3D Vision (p. 111/197) R. Šára, CMP; rev. 13–Dec–2022

Example Matching Results for the 7-point Algorithm with RANSAC

input images interest points (ca. 3600) tentative corresp. (416) matching (340)

• descriptors used to obtain tentative matches but no descriptors used in the final matching

• without local optimization the minimization is over a discrete set of epipolar geometries proposable from 7-tuples

• notice some wrong matches (they have wrong depth, even negative) remember: hidden labels →111

• they cannot be rejected without additional constraints or scene knowledge

3D Computer Vision: V. Optimization for 3D Vision (p. 112/197) R. Šára, CMP; rev. 13–Dec–2022

▶A Preview: RANSAC with Local Optimization and Early Stopping

1. initialize the best configuration as empty Cbest := ∅ and proposal index k := 0

2. estimate the total number of needed proposals as N :=
(n
s

)
n – No. of primitives, s – minimal config size

3. while k ≤ N :

a) propose a minimal random configuration S of size s from q(S)
S

b) if π(S) > π(Cbest) then accept

i) update the best config Cbest := S π(S) marginalized as in (27); π(S) includes a prior ⇒ MAP

ii) threshold-out inliers using eT from (28)

2eT
S

iii) locally optimize from the inliers of Cbest LM optimization with robustified (→117) Sampson error

possibly weighted by posterior π(mij) [Chum et al. 2003]

LO(Cbest)

iv) update Cbest, update inliers using (28), re-estimate the stopping criterion N from inlier counts →126 for derivation

N =
log(1 − P)

log(1 − εs)
, ε =

| inliers(Cbest)|
n

,

c) k := k + 1

4. output Cbest

• see MPV course for RANSAC details see also [Fischler & Bolles 1981], [25 years of RANSAC]

3D Computer Vision: V. Optimization for 3D Vision (p. 113/197) R. Šára, CMP; rev. 13–Dec–2022

https://cw.felk.cvut.cz/doku.php/courses/a4m33mpv/start

▶Towards π(S): The Full Problem of Matching and Fundamental Matrix Estimation

Problem: Given image keypoint sets X = {xi}mi=1 and Y = {yj}nj=1 and their descriptors D,
find the most probable
1. inlier keypoints SX ⊆ X, SY ⊆ Y
2. one-to-one perfect matching M : SX → SY perfect matching: 1-factor of the bipartite graph

3. fundamental matrix F such that rankF = 2
4. such that for each xi ∈ SX and yj = M(xi) it is probable that

a) the image descriptor D(xi) is similar to D(yj), and

b) the total reprojection error E =
∑

ij e2ij(F) is small note a slight change in notation: eij

5. inlier-outlier and outlier-outlier matches are improbableMSX YSYX
6

7

2

5
3

2

5

8

4 4

6

3

1

1 86 7

X

= 0

M : Y

= 1 (matched)

1

2

3

4

5

6

1 2 3 4 5

(M∗,F∗) = argmax
M,F

π(E,D,F,M) = argmax
M,F

p(E,D,F | M)P (M) (22)

• probabilistic model: an efficient language for problem formulation it also unifies 4.a and 4.b

• the (22) is a Bayesian probabilistic model there is a constant number of random variables!

• binary matching table Mij ∈ {0, 1} of fixed size m× n

• each row/column contains at most one unity
• zero rows/columns correspond to unmatched point xi/yj

3D Computer Vision: V. Optimization for 3D Vision (p. 114/197) R. Šára, CMP; rev. 13–Dec–2022

Deriving A Robust Matching Model by Approximate Marginalization

For algorithmic efficiency, instead of (M∗,F∗) = argmax
M,F

p(E,D,F | M)P (M) solve

F∗ = argmax
F

p(E,D,F) (23)

by marginalization of p(E,D,F | M)P (M) over the set of all matchings M s.t. M ∈ M this changes the problem!

drop the assumption that M is a 1:1 matching, assume correspondence-wise independence:

p(E,D,F | M)P (M)=
m∏
i=1

n∏
j=1

pe(eij , dij ,F | mij)P (mij)

• eij represents (reprojection) error for match xi ↔ yi: e.g. eij(xi, yi,F)
• dij represents descriptor similarity for match xi ↔ yi: e.g. dij = ∥d(xi)− d(yj)∥

Approximate marginalization: take all the 2mn terms in place of M

p(E,D,F) ≈
∑

m11∈{0,1}

∑
m12

· · ·
∑
mmn

p(E,D,F | M)P (M) =

=
∑
m11

· · ·
∑
mmn

m∏
i=1

n∏
j=1

pe(eij , dij ,F | mij)P (mij) =
⊛ 1· · · =

=
m∏
i=1

n∏
j=1

∑
mij∈{0,1}

pe(eij , dij ,F | mij)P (mij)

︸ ︷︷ ︸
we will continue with this term

(24)

3D Computer Vision: V. Optimization for 3D Vision (p. 115/197) R. Šára, CMP; rev. 13–Dec–2022

Robust Matching Model (cont’d)∑
mij∈{0,1}

pe(eij , dij ,F | mij)P (mij) =

= pe(eij , dij ,F | mij = 1)︸ ︷︷ ︸
p1(eij ,dij ,F)

P (mij = 1)︸ ︷︷ ︸
1−P0

+ pe(eij , dij ,F | mij = 0)︸ ︷︷ ︸
p0(eij ,dij ,F)

P (mij = 0)︸ ︷︷ ︸
P0

=

= (1− P0) p1(eij , dij ,F) + P0 p0(eij , dij ,F) (25)

• the p0(eij , dij ,F) is a penalty for ‘missing a correspondence’ but it should be a p.d.f. (cannot be a constant)
→117 for a simplification

choose P0 → 1, p0(·) → 0 so that
P0

1− P0
p0(·) ≈ const

• the p1(eij , dij ,F) is typically an easy-to-design term: assuming independence of reprojection error and descriptor
similarity:

p1(eij , dij ,F) = p1(eij | F) pF (F) p1(dij)

• we choose, e.g.

p1(eij | F) =
1

Te(σ1)
e
−

e2ij(F)

2σ2
1 , p1(dij) =

1

Td(σd, dimd)
e
−

∥d(xi)−d(yj)∥
2

2σ2
d (26)

• F is a random variable and σ1, σd, P0 are parameters

• the form of Te(σ1) depends on the error definition, it may depend on xi, yj but not on F

• we will continue with the result from (25)

3D Computer Vision: V. Optimization for 3D Vision (p. 116/197) R. Šára, CMP; rev. 13–Dec–2022

▶Simplified Robust Energy (Error) Function

• assuming the choice of p1 as in (26), we are simplifying (24) to

p(E,D,F) = p(E,D | F) pF (F) = pF (F)
m∏
i=1

n∏
j=1

[
(1− P0) p1(eij , dij | F) + P0 p0(eij , dij | F)

]
• we choose σ0 ≫ σ1 and omit dij for simplicity; then the square-bracket term is

1− P0

Te(σ1)
e
−

e2ij(F)

2σ2
1 +

P0

Te(σ0)
e
−

e2ij(F)

2σ2
0 =

1− P0

Te(σ1)

e
−

e2ij(F)

2σ2
1 +

Te(σ1)

1− P0

P0

Te(σ0)
e
−

e2ij(F)

2σ2
0

• we define the ‘potential function’ as: V (x) = − log p(x), then we maximize

V (E,D | F) =
m∑
i=1

n∑
j=1

− log
1− P0

Te(σ1)︸ ︷︷ ︸
∆ = const

− log
(
e
−

e2ij(F)

2σ2
1 +

P0

1− P0

Te(σ1)

Te(σ0)
e
−

e2ij(F)

2σ2
0︸ ︷︷ ︸

t ≈ const

) =

= mn∆+

m∑
i=1

n∑
j=1

− log
(
e
−

e2ij(F)

2σ2
1 + t

)
︸ ︷︷ ︸

V̂ (eij)

(27)

• the terms in (27) are: (constant) + (total robust error for all pairs in M) expensive but explicit matching is avoided

• note we are summing over all mn matches (m, n are constant!)

• when t = 0 we have quadratic inlier error function V̂ (eij) = e2ij(F)/(2σ2
1)

3D Computer Vision: V. Optimization for 3D Vision (p. 117/197) R. Šára, CMP; rev. 13–Dec–2022

▶The Action of the Robust Matching Model on Data

Example for V̂ (eij) from (27):

−4 −3 −2eT −1 0 1 eT2 3 4
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

σ
1
 = 1

e

V

V when t = 0

V when t = 0.25

t = 0.25

red – the (non-robust) quadratic error V̂ (eij) when t = 0

blue – the rejected match penalty t

green – robust V̂ (eij) from (27)

• if the error of a correspondence exceeds a limit, it is ignored

• then V̂ (eij) = const and we just count outliers in (27)
• t controls the ‘turn-off’ point
• the inlier/outlier threshold is eT – the error for which

(1− P0) p1(eT) = P0 p0(eT): note that t ≈ 0

eT = σ1

√
− log t2, t = e

− 1
2

(
eT
σ1

)2
e.g. eT = 4σ1 → t ≈ 3.4 · 10−4 (28)

The full optimization problem (23) uses (27):

F∗ = argmax
F

data model︷ ︸︸ ︷
p(E,D | F) ·

prior︷︸︸︷
p(F)

p(E,D)︸ ︷︷ ︸
evidence

≈ argmin
F

V (F) +
m∑
i=1

n∑
j=1

log
(
e
−

e2ij(F)

2σ2
1 + t

)
• typically we take V (F) = − log p(F) = 0 unless we need to stabilize a computation, e.g. when video camera moves

smoothly (on a high-mass vehicle) and we have a prediction for F
• the evidence is not needed unless we want to compare different models (e.g. homography vs. epipolar geometry)

3D Computer Vision: V. Optimization for 3D Vision (p. 118/197) R. Šára, CMP; rev. 13–Dec–2022

How To Find the Global Maxima (Modes) of a PDF?

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

p
(x

)

x

0 1000 2000 3000 4000 5000

exhaustive

randomized

MH_crawl

Gibbs

iterations

• averaged over 104 trials

• number of proposals before
|x − xtrue| ≤ step

• given a toy probability distribution p(x) at left p.d.f. on [0, 1], mode at 0.1

consider several methods:

1. exhaustive search
step = 1/(iterations-1);
for x = 0:step:1
if p(x) > bestp
bestx = x; bestp = p(x);

end
end

• slow algorithm
(definite quantization)

• fast to implement

2. randomized search with uniform sampling
while t < iterations
x = rand(1);
if p(x) > bestp
bestx = x; bestp = p(x);

end
t = t+1; % time

end

• equally slow algorithm

• fast to implement

3. random sampling from p(x) (Gibbs sampler)

• faster algorithm • fast to implement but often infeasible (e.g. when p(x) is data

dependent (our case in correspondence prob.))

4. Metropolis-Hastings sampling
• almost as fast (with care) • not so fast to implement

• rarely infeasible • RANSAC belongs here

• simpler (unimodal) distributions result in faster convergence

3D Computer Vision: V. Optimization for 3D Vision (p. 119/197) R. Šára, CMP; rev. 13–Dec–2022

How To Generate Random Samples from a Complex Distribution?

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

p
(x

),

 q
(x

|x
0
)/

1
0

x

target (red) and scaled proposal (blue) distributions • red: probability density function π(x) of the toy distribution on
the unit interval target distribution

π(x) =
4∑

i=1

γi Be(x;αi, βi),
4∑

i=1

γi = 1, γi ≥ 0

Be(x;α, β) =
1

B(α, β)
· xα−1(1− x)β−1, α, β ≥ 0

• alg. for generating samples from Be(x;α, β) is known

• ⇒ we can generate samples from π(x) how?

• suppose we cannot sample from π(x) but we can sample from some ‘simple’ proposal distribution q(x | x0),
given the previous sample x0 (blue)

q(x | x0) =

U0,1(x) (independent) uniform sampling = Be(x, 1, 1)

Be(x; x0
T

+ 1, 1−x0
T

+ 1) ‘beta’ diffusion (crawler) T – temperature

π(x) (independent) Gibbs sampler

• note we have unified all the random sampling methods from the previous slide
• how to redistribute proposal samples q(x | x0) to target distribution π(x) samples?

3D Computer Vision: V. Optimization for 3D Vision (p. 120/197) R. Šára, CMP; rev. 13–Dec–2022

▶Metropolis-Hastings (MH) Sampling

C, S – configurations (of all variable values) e.g. C = x and π(C) = π(x) from →120

Goal: Generate a sequence of random samples {Ct} from target distribution π(C)
• setup a Markov chain with a suitable transition probability to generate the sequence

Sampling procedure
1. given current configuration Ct, propose (draw a random) configuration sample S from q(S | Ct)

q may use some information from Ct (Hastings)

2. compute acceptance probability the redistribution filter; note the evidence term drops out

a = min

{
1,

π(S)

π(Ct)
· q(Ct | S)
q(S | Ct)

} a

1− a

Ct−1 Ct

Ct+1 = S

Ct+1 = Ct

3. accept S with probability a
a) draw a random number u from unit-interval uniform distribution U0,1

b) if u ≤ a then Ct+1 := S else Ct+1 := Ct

‘Programming’ an MH sampler
1. design a proposal distribution (mixture) q and a sampler from q

2. express functions q(Ct | S) and q(S | Ct) as proper distributions not always simple

Finding the mode
• remember the best sample fast implementation but must wait long to hit the mode

• use simulated annealing very slow

• use the sampler as an explorer and do local optimization from the accepted sample a trade-off between speed and accuracy

an optimal algorithm does not use just the best sample: a Stochastic EM Algorithm (e.g. SAEM)

3D Computer Vision: V. Optimization for 3D Vision (p. 121/197) R. Šára, CMP; rev. 13–Dec–2022

MH Sampling Demo

sampling process (100k samples; video, 7:33) click for video

• blue point: current sample

• green circle: best sample so far quality = π(x)

• histogram: current distribution of visited states

• the vicinity of modes are the most often visited states

initial sample

final distribution of visited states

3D Computer Vision: V. Optimization for 3D Vision (p. 122/197) R. Šára, CMP; rev. 13–Dec–2022

Demo Source Code (Matlab)

function x = proposal_gen(x0)

% proposal generator q(x | x0)

T = 0.01; % temperature

x = betarnd(x0/T+1,(1-x0)/T+1);

end

function p = proposal_q(x, x0)

% proposal distribution q(x | x0)

T = 0.01;

p = betapdf(x, x0/T+1, (1-x0)/T+1);

end

function p = target_p(x)

% target distribution p(x)

% shape parameters:

a = [2 40 100 6];

b = [10 40 20 1];

% mixing coefficients:

w = [1 0.4 0.253 0.50]; w = w/sum(w);

p = 0;

for i = 1:length(a)

p = p + w(i)*betapdf(x,a(i),b(i));

end

end

%% DEMO script

k = 10000; % number of samples

X = NaN(1,k); % list of samples

x0 = proposal_gen(0.5);

for i = 1:k

x1 = proposal_gen(x0);

a = target_p(x1)/target_p(x0) * ...

proposal_q(x0,x1)/proposal_q(x1,x0);

if rand(1) < a

X(i) = x1; x0 = x1;

else

X(i) = x0;

end

end

figure(1)

x = 0:0.001:1;

plot(x, target_p(x), ’r’, ’linewidth’,2);

hold on

binw = 0.025; % histogram bin width

n = histc(X, 0:binw:1);

h = bar(0:binw:1, n/sum(n)/binw, ’histc’);

set(h, ’facecolor’, ’r’, ’facealpha’, 0.3)

xlim([0 1]); ylim([0 2.5])

xlabel ’x’

ylabel ’p(x)’

title ’MH demo’

hold off

3D Computer Vision: V. Optimization for 3D Vision (p. 123/197) R. Šára, CMP; rev. 13–Dec–2022

▶The Nine Elements of a Data-Driven MH Sampler

data-driven = proposals q(S | Ct) are derived from data

Then
1. primitives = elementary measurements

• points in line fitting
• matches in epipolar geometry or homography estimation

2. configuration = s-tuple of primitives minimal subsets necessary for parameter estimate

S

the minimization will then be over a discrete set:

• of point pairs in line fitting (left)
• of match 7-tuples in epipolar geometry estimation

3. a map from configuration C to parameters θ = θ(C) by solving the minimal problem
• line parameters n from two points (x1,x2) 7→ n
• fundamental matrix F from seven matches

{
(x1

i ,x
2
i)
}
i=1:7

7→ F
• homography H from four matches, etc

{
(x1

i ,x
2
i)
}
i=1:4

7→ H

4. target likelihood p(E,D | θ(C)) is represented by π(C)
• can use log-likelihood: then it is the sum of robust errors V̂ (eij) given F (27)

• robustified point distance from the line θ = n
• robustified Sampson error for θ = F, etc

• posterior likelihood p(E,D | θ)p(θ) can be used MAPSAC (π(S) includes the prior)

3D Computer Vision: V. Optimization for 3D Vision (p. 124/197) R. Šára, CMP; rev. 13–Dec–2022

▶cont’d

5. parameter distribution follows the empirical distribution of the s-tuples of primitives. Since the proposal is
done via the minimal problem solver, it is ‘data-driven’,

• pairs of points define line distribution p(n | X) (left)
• random correspondence 7-tuples define epipolar geometry distribution p(F | M)

6. proposal distribution q(·) is just a constant(!) distribution of the s-tuples:

a) q uniform, independent q(S | Ct) = q(S) =
(mn

s

)−1
, then a = min

{
1,

p(S)
p(Ct)

}
b) q dependent on descriptor similarity PROSAC (similar pairs are proposed more often)

c) q dependent on the current configuration Ct e.g. ‘not far from Ct’

7. (optional) hard inlier/outlier discrimination by the threshold (28)

V̂ (eij) < eT , eT = σ1

√
− log t2

8. local optimization from promising proposals

• can use the hard inliers or just the robust error (27) more expensive but more stable
• cannot be used to replace Ct it would violate ‘detailed balance’ required for the MH scheme

9. stopping based on the probability of proposing an all-inlier configuration →126

3D Computer Vision: V. Optimization for 3D Vision (p. 125/197) R. Šára, CMP; rev. 13–Dec–2022

▶Data-Driven Sampler Stopping

• The number of proposals N needed to hit the “true parameters” = an all-inlier configuration:
this will tell us nothing about the accuracy of the result

P . . . probability that the last proposal is an all-inlier 1 − P . . . all previous N proposals contained outliers

ε . . . the fraction of inliers among primitives, ε ≤ 1
s . . . No. of primitives in a minimal configuration 2 in line fitting, 7 in 7-point algorithm, 4 in homography fitting,. . .

N ≥ log(1− P)

log(1− εs)

• εs . . . proposal is all-inlier
• 1− εs . . . proposal contains at least one outlier
• (1− εs)N . . .N previous proposals contained an outlier = 1− P

N for s = 7
P

ε 0.8 0.99

0.5 205 590
0.2 1.3·105 3.5·105
0.1 1.6·107 4.6·107

10
−1

10
0

10
0

10
2

10
4

10
6

10
8

ε (inlier fraction)

N
 (

p
ro

p
o
s
a
ls

)

s = 7

P=0.5

P=0.8

P=0.99

P=0.999

• N can be re-estimated using the current estimate for ε (if there is LO, then after LO)
the quasi-posterior estimate for ε is the average over all samples generated so far

• this shows we have a good reason to limit all possible matches to tentative matches only
• for ε → 0 we gain nothing over the standard MH-sampler stopping rule not covered in this course

3D Computer Vision: V. Optimization for 3D Vision (p. 126/197) R. Šára, CMP; rev. 13–Dec–2022

▶Stripping MH Down To Get RANSAC [Fischler & Bolles 1981]

• when we are interested in the best config only. . . and we need fast data exploration. . .
• . . . then Steps 2–4 below make no difference when waiting for the best sample configuration:

From sampling to RANSACing

1. given Ct, draw a random sample S from q(S | Ct) q(S) independent sampling

no use of information from Ct

2. compute acceptance probability

a = min

{
1,

π(S)

π(Ct)
· q(Ct | S)
q(S | Ct)

}
3. draw a random number u from unit-interval uniform distribution U0,1

4. if u ≤ a then Ct+1 := S else Ct+1 := Ct

5. if π(S) > π(Cbest) then remember Cbest := S

• this is the ‘stupid’ Method 2 from →119

• it has a good overall exploration but slow convergence in the vicinity of a mode where Ct could serve as an attractor

• getting a good accuracy configuration might take very long this way

• (possibly robust) ‘local optimization’ necessary for reasonable performance

• unlike the full sampler, it cannot use the past generated configurations to estimate any parameters

3D Computer Vision: V. Optimization for 3D Vision (p. 127/197) R. Šára, CMP; rev. 13–Dec–2022

The Opposite End: The Power of MH Sampler

By marginalization in (23) we have lost constraints on M (e.g. uniqueness). One can choose a better model when not
marginalizing:

π(M,F, E,D) = p(E | M,F)︸ ︷︷ ︸
reprojection error

· p(D | M)︸ ︷︷ ︸
similarity

· p(F)︸ ︷︷ ︸
prior

· P (M)︸ ︷︷ ︸
constraints

this is a global model: decisions on mij are no longer independent!

In the MH scheme

• one can work with full p(M,F | E,D), then configuration C = M F computable from M

• explicit labeling mij can be done by, e.g. sampling from

q(mij | F) ∼
(
(1− P0) p1(eij | F), P0 p0(eij | F)

)
when P (M) uniform then always accepted, a = 1 ⊛ derive

• we can compute the posterior probability of each match p(mij) by histogramming mij from the sequence {Ci}
• local optimization can then use explicit inliers and p(mij)

• error can be estimated for the elements of F from the sequence {Ci} does not work in RANSAC

• large error indicates problem degeneracy this is not directly available in RANSAC

• good conditioning is not a requirement we work with the entire distribution p(F)

• one can find the most probable number of models (epipolar geometries, homographies, . . .) by reversible jump MCMC

if there are multiple models explaning data, RANSAC will return one of them randomly

3D Computer Vision: V. Optimization for 3D Vision (p. 128/197) R. Šára, CMP; rev. 13–Dec–2022

Example: MH Sampling for a More Complex Problem

Task: Find two vanishing points from line segments detected in input image. Principal point is known, square pixel.

click for video
simplifications

• vanishing points restricted to the set of all pairwise
segment intersections

• mother lines fixed by segment centroid, then θL
uniquely given by λi, and the configuration is

C = {v1, v2,Λ}

• primitives = line segments
• latent variables

1. each line has a vanishing point label λi ∈ {∅, 1, 2}, ∅ = outlier
2. ‘mother line’ parameters θL (they pass through their vanishing points)

• explicit variables

1. two unknown vanishing points v1, v2

• marginal proposals (vi fixed, vj proposed)
• minimal configuration s = 2

� = 1
� = 2 � = ;v2

v1
arg min

v1,v2,Λ,θL
V (v1, v2,Λ, θL)

• blue lines point away from the vanishing points
• proposal acceptance: 20%
• ca. 150 iterations to a good solution

3D Computer Vision: V. Optimization for 3D Vision (p. 129/197) R. Šára, CMP; rev. 13–Dec–2022

Module VI

3D Structure and Camera Motion

6.1Reconstructing Camera System: From Triples and from Pairs

6.2Bundle Adjustment

covered by

[1] [H&Z] Secs: 9.5.3, 10.1, 10.2, 10.3, 12.1, 12.2, 12.4, 12.5, 18.1

[2] Triggs, B. et al. Bundle Adjustment—A Modern Synthesis. In Proc ICCV Workshop on Vision Algorithms.
Springer-Verlag. pp. 298–372, 1999.

additional references

D. Martinec and T. Pajdla. Robust Rotation and Translation Estimation in Multiview Reconstruction. In Proc CVPR, 2007

M. I. A. Lourakis and A. A. Argyros. SBA: A Software Package for Generic Sparse Bundle Adjustment. ACM Trans Math Software

36(1):1–30, 2009.

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 130/197) R. Šára, CMP; rev. 13–Dec–2022

▶Reconstructing Camera System by Gluing Camera Triples

Given: Calibration matrices Kj and tentative correspondences per camera triples.

Initialization

1. initialize camera cluster C with a pair P1, P2

2. find essential matrix E12 and matches M12 by the
5-point algorithm →88

3. construct camera pair

P1 = K1

[
I 0

]
, P2 = K2

[
R t

]
4. triangulate {Xi} per match

from M12 →106

5. initialize point cloud X with {Xi} satisfying
chirality constraint zi > 0 and apical angle
constraint |αi| > αT

αi

mi2

ei1(Xi,P1)
eij(Xi,Pj)

mij

PjP2

P1

Xi

mi1

Attaching camera Pj /∈ C
1. select points Xj from X that have matches to Pj

2. estimate Pj using Xj , RANSAC with the 3-pt alg. (P3P), projection errors eij in Xj →66

3. reconstruct 3D points from all tentative matches from Pj to all Pl, l ̸= k that are not in X
4. filter them by the chirality and apical angle constraints and add them to X
5. add Pj to C
6. perform bundle adjustment on X and C coming next →139

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 131/197) R. Šára, CMP; rev. 13–Dec–2022

▶The Projective Reconstruction Theorem

• We can run an analogical procedure when the cameras remain uncalibrated. But:

Observation: Unless Pj are constrained, then for any number of cameras j = 1, . . . , k

mij ≃ PjXi = PjH
−1︸ ︷︷ ︸

P′
j

HXi︸ ︷︷ ︸
X′

i

= P′
j X

′
i

• when Pi and X are both determined from correspondences (including calibrations Ki), they are given up to a
common 3D homography H

(translation, rotation, scale, shear, pure perspectivity)

�1 �2 −→

m1 m2 X X ′

• when cameras are internally calibrated (Kj known) then H is restricted to a similarity since it must preserve
the calibrations Kj [H&Z, Secs. 10.2, 10.3], [Longuet-Higgins 1981]

(translation, rotation, scale) →134 for an indirect proof

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 132/197) R. Šára, CMP; rev. 13–Dec–2022

▶Reconstructing Camera System from Pairs (Correspondence-Free)

Problem: Given a set of p decomposed pairwise essential matrices Êij = [t̂ij]×R̂ij and calibration matrices Ki

reconstruct the camera system Pi, i = 1, . . . , k
→81 and →151 on representing E

P1 P8 P5P6Ê78P7
P4P3P2Ê12 Ê82Ê18 We construct calibrated camera pairs P̂ij ∈ R6,4 see (17)

P̂ij =

[
K−1

i P̂i

K−1
j P̂j

]
=

[
I 0

R̂ij t̂ij

]
∈ R6,4

• singletons i, j correspond to graph nodes k nodes

• pairs ij correspond to graph edges p edges

P̂ij are in different coordinate systems but these are related by similarities P̂ijHij = Pij Hij ∈ SIM(3)[
I 0

R̂ij t̂ij

]
︸ ︷︷ ︸

∈R6,4

[
Rij tij
0⊤ sij

]
︸ ︷︷ ︸

Hij∈R4,4

!
=

[
Ri ti
Rj tj

]
︸ ︷︷ ︸

∈R6,4

(29)

• (29) is a system of 24p eqs. in 7p+ 6k unknowns 7p ∼ (tij ,Rij , sij), 6k ∼ (Ri, ti)

• each P̂i = (Ri, ti) appears on the RHS as many times as is the degree of node Pi eg. P5 3×

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 133/197) R. Šára, CMP; rev. 13–Dec–2022

▶cont’d

Eq. (29) implies

[
Rij

R̂ijRij

]
=

[
Ri

Rj

]
and

[
tij

R̂ijtij + sij t̂ij

]
=

[
ti
tj

]
• Rij and tij can be eliminated:

R̂ijRi = Rj , R̂ijti + sij t̂ij = tj , sij > 0 (30)

• note transformations that do not change these equations assuming no error in R̂ij

1. Ri 7→ RiR, 2. ti 7→ σ ti and sij 7→ σsij , 3. ti 7→ ti +Rit

• the global frame is fixed, e.g. by selecting

R1 = I,
k∑

i=1

ti = 0,
1

p

∑
i,j

sij = 1 (31)

• rotation equations are decoupled from translation equations
• in principle, sij could correct the sign of t̂ij from essential matrix decomposition →81

but Ri cannot correct the α sign in R̂ij ⇒ therefore make sure all points are in front of cameras and constrain sij > 0; →83

+ pairwise correspondences are sufficient

– suitable for well-distributed cameras only (dome-like configurations) otherwise intractable or numerically unstable

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 134/197) R. Šára, CMP; rev. 13–Dec–2022

Finding The Rotation Component in Eq. (30)

1. Poor Man’s Algorithm:
a) create a Minimum Spanning Tree of G from →133

b) propagate rotations from R1 = I via R̂ijRi = Rj from (30)

2. Rich Man’s Algorithm:
Consider R̂ijRi = Rj , (i, j) ∈ E(G), where R are a 3× 3 rotation matrices
Errors per columns c = 1, 2, 3 of Rj :

ec
ij = R̂ijr

c
i − rcj , for all i, j

Solve

argmin
∑

(i,j)∈E(G)

3∑
c=1

(ec
ij)

⊤ec
ij s.t. (rki)

⊤(rlj) =

1 i = j ∧ k = l

0 i ̸= j ∧ k = l

0 i = j ∧ k ̸= l

this is a quadratic programming problem

3. SVD-Lover’s Algorithm:
Ignore the constraints and project the solution onto rotation matrices see next

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 135/197) R. Šára, CMP; rev. 13–Dec–2022

SVD Algorithm (cont’d)

Per columns c = 1, 2, 3 of Rj :

R̂ijr
c
i − rcj = 0, for all i, j (32)

• fix c and denote rc =
[
rc1, r

c
2, . . . , r

c
k

]⊤
c-th columns of all rotation matrices stacked; rc∈R3k

• then (32) becomes Drc = 0 D ∈ R3p,3k

• 3p equations for 3k unknowns → p ≥ k in a 1-connected graph we have to fix rc1 = [1, 0, 0]

Ex: (k = p = 3)Ê23P1Ê13 Ê12P3P2 →
R̂12r

c
1 − rc2 = 0

R̂23r
c
2 − rc3 = 0

R̂13r
c
1 − rc3 = 0

→ Drc =

R̂12 −I 0

0 R̂23 −I

R̂13 0 −I

rc1rc2
rc3

 = 0

• must hold for any c

Idea: [Martinec & Pajdla CVPR 2007]

1. find the space of all rc ∈ R3k that solve (32) D is sparse, use [V,E] = eigs(D’*D,3,0); (Matlab)

2. choose 3 unit orthogonal vectors in this space 3 smallest eigenvectors

3. find closest rotation matrices per cam. using SVD because ∥rc∥ = 1 is necessary but insufficient

R∗
i = UV⊤, where Ri = UDV⊤

• global world rotation is arbitrary

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 136/197) R. Šára, CMP; rev. 13–Dec–2022

Finding The Translation Component in Eq. (30)

From (30) and (31): 0 < d ≤ 3 – rank of camera center set, p – #pairs, k – #cameras

R̂ijti + sij t̂ij − tj = 0,
k∑

i=1

ti = 0,
∑
i,j

sij = p, sij > 0, ti ∈ Rd

• in rank d: d · p+ d+ 1 indep. eqns for d · k + p unknowns → p ≥ d(k−1)−1
d−1

def
= Q(d, k)

Ex: Chains and circuits construction of ti from sticks of known orientation t̂ij and unknown length sij?

p = k − 1 k = p = 3 k = p = 4 k = p > 4

k ≤ 2 for any d 3 ≥ d ≥ 2: non-collinear ok 3 ≥ d ≥ 3: non-planar ok 3 ≥ d ≥ k − 1: impossible

• equations insufficient for chains, trees, or when d = 1 collinear cameras

• 3-connectivity implies sufficient equations for d = 3 cams. in general pos. in 3D

– s-connected graph has p ≥ ⌈ sk
2
⌉ edges for s ≥ 2, hence p ≥ ⌈ 3k

2
⌉ ≥ Q(3, k) = 3k

2
− 2

• 4-connectivity implies sufficient eqns. for any k when d = 2 coplanar cams

– since p ≥ ⌈2k⌉ ≥ Q(2, k) = 2k − 3
– maximal planar tringulated graphs have p = 3k − 6

and give a solution for k ≥ 3 maximal planar triangulated graph example:

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 137/197) R. Šára, CMP; rev. 13–Dec–2022

cont’d

Linear equations in (30) and (31) can be rewritten to

Dt = 0, t =
[
t⊤1 , t

⊤
2 , . . . , t

⊤
k , s12, . . . , sij , . . .

]⊤
assuming measurement errors Dt = ϵ and d = 3, we have

t ∈ R3k+p, D ∈ R3p,3k+p sparse

and
t∗ = argmin

t, sij>0
t⊤D⊤Dt

• this is a quadratic programming problem (mind the constraints!)

z = zeros(3*k+p,1);
t = quadprog(D.’*D, z, diag([zeros(3*k,1); -ones(p,1)]), z);

• but check the rank first!

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 138/197) R. Šára, CMP; rev. 13–Dec–2022

▶Bundle Adjustment

Goal: Use a good (and expensive) error model and improve the initial estimates of all parameters

Given:
1. set of 3D points {Xi}pi=1

2. set of cameras {Pj}cj=1

3. fixed tentative projections mij

Required:
1. corrected 3D points {X′

i}pi=1

2. corrected cameras {P′
j}cj=1

Latent:
1. visibility decision vij ∈ {0, 1} per mijP1 Xi

ei1(Xi;P1) eij(Xi;Pj)mijPjP2mi1 mi2
• for simplicity, X, m are considered Cartesian (not homogeneous)
• we have projection error eij(Xi,Pj) = xi −mi per image feature, where xi = PjXi

• for simplicity, we will work with scalar error eij = ∥eij∥

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 139/197) R. Šára, CMP; rev. 13–Dec–2022

Robust Objective Function for Bundle Adjustment

The data model is constructed by marginalization over vij , as in the Robust Matching Model →116

p({e} | {P,X}) =
p∏

pts:i=1

c∏
cams:j=1

(
(1− P0)p1(eij | Xi,Pj) + P0 p0(eij | Xi,Pj)

)
marginalized negative log-density is (→117)

− log p({e} | {P,X}) =
∑
i

∑
j

− log
(
e
−

e2ij(Xi,Pj)

2σ2
1 + t

)
︸ ︷︷ ︸
ρ(e2ij(Xi,Pj)) = ν2

ij(Xi,Pj)

def
=
∑
i

∑
j

ν2ij(Xi,Pj)

• we can use LM, eij is the exact projection error function (not Sampson error)
• νij is a ‘robust’ error fcn.; it is non-robust (νij = eij) when t = 0
• ρ(·) is a ‘robustification function’ often found in M-estimation
• the Lij in Levenberg-Marquardt changes to vector

(Lij)l =
∂νij

∂θl
=

1

1 + t e
e2ij(θ)/(2σ

2
1)︸ ︷︷ ︸

small for eij ≫ σ1

·
1

νij(θ)
·

1

4σ2
1

·
∂e2ij(θ)

∂θl
(33)

but the LM method stays the same as before →108–109 −4 −2 0 2 4
0

2

4

6

8

10

x

−
lo

g
 p

σ = 1, t = 0.02

e
ij

2
(x)=x

2

ν
ij

2
(x)

• outliers (wrong vij): almost no impact on ds in normal equations because the red term in (33) scales contributions to
both sums down for the particular ij

−
∑
i,j

L⊤
ij νij(θ

s) =
(k∑

i,j

L⊤
ijLij

)
ds

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 140/197) R. Šára, CMP; rev. 13–Dec–2022

▶Sparsity in Bundle Adjustment

We have q = 3p+ 11k parameters: θ = (X1,X2, . . . ,Xp; P1,P2, . . . ,Pk) points, cameras

We will use a multi-index r = 1, . . . , z, z = p · k . Then r correspond to point-cam pairs (i, j)

θ∗ = argmin
θ

z∑
r=1

ν2r (θ), θs+1 := θs + ds, −
z∑

r=1

L⊤
r νr(θ

s) =

(
z∑

r=1

L⊤
r Lr + λ diag(L⊤

r Lr)

)
ds

The block-form of Lr in Levenberg-Marquardt (→108) is zero except in columns i and j:
r-th error term is ν2r = ρ(e2ij(Xi,Pj))

Lr =
i j r = (i, j) blocks:

: Xi, 1× 3
: Pj , 1× 11

L⊤
r Lr =

jij
i

blocks:
: Xi −Xi, 3× 3
: Xi −Pj , 3× 11
: Pj −Pj , 11× 11

z∑
r=1

L⊤
r Lr =

3p

3p

11k

• “points-first-then-cameras” parameterization scheme

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 141/197) R. Šára, CMP; rev. 13–Dec–2022

▶Choleski Decomposition for B. A.

The most expensive computation in B. A. is solving the normal eqs:

find x such that b
def
= −

z∑
r=1

L⊤
r νr(θ

s) =
(z∑
r=1

L⊤
r Lr + λ diag

(
L⊤
r Lr

))
x

def
= Ax

• A is very large approx. 3 · 104 × 3 · 104 for a small problem of 10000 points and 5 cameras

• A is sparse and symmetric, A−1 is dense direct matrix inversion is prohibitive

Choleski: symmetric positive definite matrixA can be decomposed toA = LL⊤,
where L is lower triangular. If A is sparse then L is sparse, too.

1. decompose A = LL⊤
L = chol(A); transforms the problem to LL⊤x︸ ︷︷ ︸

c

= b

2. solve for x in two passes:

Lc = b ci := L−1
ii

(
bi −

∑
j<i

Lijcj
)

forward substitution, i = 1, . . . , q (params)

L⊤x = c xi := L−1
ii

(
ci −

∑
j>i

Ljixj

)
back-substitution

• Choleski decomposition is fast (does not touch zero blocks)
non-zero elements are 9p + 121k + 66pk ≈ 3.4 · 106; ca. 250× fewer than all elements

• it can be computed on single elements or on entire blocks
• use profile Choleski for sparse A and diagonal pivoting for semi-definite A see above; [Triggs et al. 1999]

• λ controls the definiteness

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 142/197) R. Šára, CMP; rev. 13–Dec–2022

Profile Choleski Decomposition is Simple

function L = pchol(A)
%
% PCHOL profile Choleski factorization,
% L = PCHOL(A) returns lower-triangular sparse L such that A = L*L’
% for sparse square symmetric positive definite matrix A,
% especially efficient for arrowhead sparse matrices.

% (c) 2010 Radim Sara (sara@cmp.felk.cvut.cz)

[p,q] = size(A);
if p ~= q, error ’Matrix A is not square’; end

L = sparse(q,q);
F = ones(q,1);
for i=1:q
F(i) = find(A(i,:),1); % 1st non-zero on row i; we are building F gradually
for j = F(i):i-1
k = max(F(i),F(j));
a = A(i,j) - L(i,k:(j-1))*L(j,k:(j-1))’;
L(i,j) = a/L(j,j);

end
a = A(i,i) - sum(full(L(i,F(i):(i-1))).^2);
if a < 0, error ’Matrix A is not positive definite’; end
L(i,i) = sqrt(a);

end
end

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 143/197) R. Šára, CMP; rev. 13–Dec–2022

▶Gauge Freedom (kalibračńı invariance)

1. The external frame is not fixed: See Projective Reconstruction Theorem →132

mij ≃ PjXi = PjH
−1HXi = P′

jX
′
i

2. Some representations are not minimal, e.g.

• P is 12 numbers for 11 parameters
• we may represent P in decomposed form K, R, t
• but R is 9 numbers representing the 3 parameters of rotation

As a result

• there is no unique solution
• matrix

∑
r L

⊤
r Lr is singular

Solutions

1. fixing the external frame (e.g. a selected camera frame) explicitly or by constraints

2. fixing the scale (e.g. s12 = 1)

3a. either imposing constraints on projective entities
• cameras, e.g. P3,4 = 1 this excludes affine cameras
• points, e.g. (Xi)4 = 1 or ∥Xi∥2 = 1 the 2nd: can represent points at infinity

3b. or using minimal representations
• points in their Euclidean representation Xi but finite points may be an unrealistic model
• rotation matrices can be represented by skew-symmetric matrices →149

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 144/197) R. Šára, CMP; rev. 13–Dec–2022

Implementing Simple Linear Constraints (by programmatic elimination)

What for?

1. fixing external frame as in θi = ti, skl = 1 for some i, k, l ‘trivial gauge’

2. representing additional knowledge as in θi = θj e.g. cameras share calibration matrix K

Introduce reduced parameters θ̂ and
replication matrix T:

θ = T θ̂ + t, T ∈ Rp,p̂, p̂ ≤ p

then Lr in LM changes to Lr T and everything
else stays the same →108

θ3

θ4
θ5

T = t =

θ2

θ̂1 θ̂2 θ̂3 θ̂4

θ1 1

1

1

1

1

these T, t represent

θ1 = θ̂1 no change

θ2 = θ̂2 no change

θ3 = t3 constancy

θ4 = θ5 = θ̂4 equality

• T deletes columns of Lr that correspond to fixed parameters it reduces the problem size

• consistent initialisation: θ0 = T θ̂0 + t or filter the init by pseudoinverse θ0 7→ T†θ0

• no need for computing derivatives for θj corresponding to all-zero rows of T fixed θ

• constraining projective entities →149–151
• more complex constraints tend to make normal equations dense
• implementing constraints is safer than explicit renaming of the parameters, gives a flexibility to experiment
• other methods are much more involved, see [Triggs et al. 1999]
• BA resource: http://www.ics.forth.gr/~lourakis/sba/ [Lourakis 2009]

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 145/197) R. Šára, CMP; rev. 13–Dec–2022

http://www.ics.forth.gr/~lourakis/sba/

Matrix Exponential: A path to Minimal Parameterizations

• for any square matrix we define

expm(A) =
∞∑

k=0

1

k!
Ak

note: A0 = I

• some properties:

expm(x) = ex, x ∈ R, expm0 = I, expm(−A) =
(
expmA

)−1
,

expm(aA+ bA) = expm(aA) expm(bA), expm(A+B) ̸= expm(A) expm(B)

expm(A⊤) = (expmA)⊤ hence if A is skew symmetric then expmA is orthogonal:(
expm(A)

)⊤
= expm(A⊤) = expm(−A) =

(
expm(A)

)−1

det
(
expmA

)
= etrA

Some consequences

• traceless matrices (trA = 0) map to unit-determinant matrices ⇒ we can represent homogeneous matrices

• skew-symmetric matrices map to orthogonal matrices ⇒ we can represent rotations

• matrix exponential provides the exponential map from the powerful Lie group theory

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 146/197) R. Šára, CMP; rev. 13–Dec–2022

Lie Groups Useful in 3D Vision

group matrix represent

special linear SL(3,R) real 3× 3, unit determinant H 2D homography

special linear SL(4,R) real 4× 4, unit determinant H 3D homography

special orthogonal SO(3) real 3× 3 orthogonal R 3D rotation

special Euclidean SE(3) 4× 4
[
R t
0 1

]
, R ∈ SO(3), t ∈ R3 3D rigid motion

similarity Sim(3) 4× 4
[
R t
0 s−1

]
, s ∈ R \ 0 rigid motion + scale

• Lie group G = topological group that is also a smooth manifold with nice properties

• Lie algebra g = vector space associated with a Lie group (tangent space of the manifold)

• group: this is where we need to work

• algebra: this is how to represent group elements with a minimal number of parameters

• Exponential map = map between algebra and its group exp: g → G

• for matrices exp = expm

• in most of the above groups we a have a closed-form formula for the exponential and for its principal inverse

• Jacobians are also readily available for SO(3), SE(3) [Solà 2020]

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 147/197) R. Šára, CMP; rev. 13–Dec–2022

Homography

H = expmZ

• SL(3,R) group element

H =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 s.t. detH = 1

• sl(3,R) algebra element 8 parameters

Z =

z11 z12 z13
z21 z22 z23
z31 z32 −(z11 + z22)

• note that trZ = 0

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 148/197) R. Šára, CMP; rev. 13–Dec–2022

▶Rotation in 3D

R = expm [ϕ]×, ϕ = (ϕ1, ϕ2, ϕ3) = φ eφ, 0 ≤ φ < π, ∥eφ∥ = 1

• SO(3) group element

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 s.t. R−1 = R⊤

• so(3) algebra element 3 parameters

[ϕ]× =

 0 −ϕ3 ϕ2

ϕ3 0 −ϕ1

−ϕ2 ϕ1 0

• exponential map in closed form Rodrigues’ formula

R = expm [ϕ]× =

∞∑
n=0

[ϕ]n×
n!

=
⊛ 1· · · = I+

sinφ

φ
[ϕ]× +

1− cosφ

φ2
[ϕ]2×

• (principal) logarithm log is a periodic function

0 ≤ φ < π, cosφ =
1

2
(tr(R)− 1) , [ϕ]× =

φ

2 sinφ
(R−R⊤),

• ϕ is rotation axis vector eφ scaled by rotation angle φ in radians

• finite limits for φ → 0 exist: sin(φ)/φ → 1, (1− cosφ)/φ2 → 1/2

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 149/197) R. Šára, CMP; rev. 13–Dec–2022

3D Rigid Motion

M = expm [ν]∧

• SE(3) group element 4× 4 matrix

M =

[
R t
0 1

]
s.t. R ∈ SO(3), t ∈ R3

• se(3) algebra element 4× 4 matrix

[ν]∧ =

[
[ϕ]× ρ
0 0

]
s.t. ϕ ∈ R3, φ = ∥ϕ∥ < π, ρ ∈ R3

• exponential map in closed form

R = expm [ϕ]×, t = dexpm([ϕ]×)ρ

dexpm([ϕ]×) =

∞∑
n=0

[ϕ]n×
(n+ 1)!

= I+
1− cosφ

φ2
[ϕ]× +

φ− sinφ

φ3
[ϕ]2×

dexpm−1([ϕ]×) = I− 1

2
[ϕ]× +

1

φ2

(
1− φ

2
cot

φ

2

)
[ϕ]2×

• dexpm: differential of the exponential in SO(3)
• (principal) logarithm via a similar trick as in SO(3)
• finite limits exist: (φ− sinφ)/φ3 → 1/6
• this form is preferred to SO(3)× R3

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 150/197) R. Šára, CMP; rev. 13–Dec–2022

▶Minimal Representations for Other Entities

• fundamental matrix via SO(3)× SO(3)× R

F = UDV⊤, D = diag(1, d2, 0), U,V ∈ SO(3), 3 + 1 + 3 = 7 DOF

• essential matrix via SO(3)× R3

E = [−t]×R, R ∈ SO(3), t ∈ R3, ∥t∥ = 1, 3 + 2 = 5 DOF

• camera pose via SO(3)× R3 or SE(3)

P = K
[
R t

]
=
[
K 0

]
M, 5 + 3 + 3 = 11 DOF

• Sim(3) useful for SfM without scale

• closed-form formulae still exist but they are a bit too messy [Eade(2017)]

• a (bit too brief) intro to Lie groups in 3D vision/robotics and SW:

J. Solà, J. Deray, and D. Atchuthan. A micro Lie theory for state estimation in robotics. arXiv:1812.01537v7

[cs.RO], August 2020.

E. Eade. Lie groups for 2D and 3D transformations. On-line at http://www.ethaneade.org/, May 2017.

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 151/197) R. Šára, CMP; rev. 13–Dec–2022

Module VII

Stereovision

7.1 Introduction
7.2Epipolar Rectification
7.3Binocular Disparity and Matching Table
7.4 Image Similarity
7.5Marroquin’s Winner Take All Algorithm
7.6Maximum Likelihood Matching
7.7Uniqueness and Ordering as Occlusion Models

mostly covered by

Šára, R. How To Teach Stereoscopic Vision. Proc. ELMAR 2010 referenced as [SP]

additional references

C. Geyer and K. Daniilidis. Conformal rectification of omnidirectional stereo pairs. In Proc Computer Vision and Pattern Recognition

Workshop, p. 73, 2003.

J. Gluckman and S. K. Nayar. Rectifying transformations that minimize resampling effects. In Proc IEEE CS Conf on Computer Vision

and Pattern Recognition, vol. 1:111–117. 2001.

M. Pollefeys, R. Koch, and L. V. Gool. A simple and efficient rectification method for general motion. In Proc Int Conf on Computer

Vision, vol. 1:496–501, 1999.

3D Computer Vision: VII. Stereovision (p. 152/197) R. Šára, CMP; rev. 13–Dec–2022

Stereovision: What Are The Relative Distances?

The success of a model-free stereo matching algorithm is unlikely:

WTA Matching:

for every left-image pixel find the most similar
right-image pixel along the corresponding epipolar
line [Marroquin 83]

disparity map from WTA a good disparity map

• monocular vision already gives a rough 3D sketch because we understand the scene
• pixelwise independent matching without any understanding is difficult
• matching can benefit from a geometric simplification of the problem

3D Computer Vision: VII. Stereovision (p. 153/197) R. Šára, CMP; rev. 13–Dec–2022

▶Linear Epipolar Rectification for Easier Correspondence Search

Obs:
• if we map epipoles to infinity, epipolar lines become parallel
• we then rotate them to become horizontal
• we then scale the images to make corresponding epipolar lines colinear
• this can be achieved by a pair of (non-unique) homographies applied to the images

Problem: Given fundamental matrix F or camera matrices P1, P2, compute a pair of homographies that maps
epipolar lines to horizontal with the same row coordinate.

Procedure:
1. find a pair of rectification homographies H1 and H2.

2. warp images using H1 and H2 and transform the fundamental matrix F 7→ H−⊤
2 FH−1

1 or the cameras

P1 7→ H1P1, P2 7→ H2P2.

rectification 1 rectification 2

original pair

rectification ∞

3D Computer Vision: VII. Stereovision (p. 154/197) R. Šára, CMP; rev. 13–Dec–2022

▶Rectification Homographies

Assumption: Cameras (P1,P2) are rectified by a homography pair (H1,H2):

P∗
i = HiPi = HiKiRi

[
I −Ci

]
, i = 1, 2

rectified entities: F∗, l∗1 , l
∗
2 , etc:

m∗
2 = (u∗

2, v
∗)v

u

m∗
1 = (u∗

1, v
∗)

l∗1 e∗2l∗2

• the rectified location difference d = u∗
1 − u∗

2 is called disparity

corresponding epipolar lines must be:

1. parallel to image rows ⇒ epipoles become e∗1 = e∗2 = (1, 0, 0)

2. equivalent l∗2 = l∗1 : l∗1 ≃ e∗1 ×m1 = [e∗1]× m1 ≃ l∗2 ≃ F∗m1 ⇒ F∗ = [e∗1]×

• therefore the canonical fundamental matrix is

F∗ ≃

0 0 0
0 0 −1
0 1 0

A two-step rectification procedure

1. find some pair of primitive rectification homographies Ĥ1, Ĥ2

2. upgrade to a pair of optimal rectification homographies while preserving F∗

3D Computer Vision: VII. Stereovision (p. 155/197) R. Šára, CMP; rev. 13–Dec–2022

▶Geometric Interpretation of Linear Rectification

What pair of physical cameras is compatible with F∗?
• we know that F = (Q1Q

−1
2)⊤[e1]× →79

• we choose Q∗
1 = K∗

1, Q∗
2 = K∗

2R
∗; then

F∗ ≃ (Q∗
1Q

∗
2
−1

)⊤[e∗1]×
!≃ (K∗

1R
∗⊤K∗

2
−1)⊤F∗

• we look for R∗, K∗
1, K

∗
2 compatible with

(K∗
1R

∗⊤K∗
2
−1)⊤F∗ = λF∗, R∗R∗⊤ = I, K∗

1,K
∗
2 upper triangular

• we also want b∗ from e∗1 ≃ P∗
1C

∗
2 = K∗

1b
∗ b∗ in camera-1 frame

• result:

R∗ = I, b∗ =

b0
0

, K∗
1 =

k11 k12 k13
0 f v0
0 0 1

, K∗
2 =

k21 k22 k23
0 f v0
0 0 1

 (34)

• rectified cameras are in canonical relative pose not rotated, canonical baseline

• rectified calibration matrices can differ in the first row only
• when K∗

1 = K∗
2 then the rectified pair is called the standard stereo pair and the homographies standard rectification

homographies
• standard rectification homographies: points at infinity have zero disparity

P∗
iX∞ = K

[
I −Ci

]
X∞ = KX∞ i = 1, 2

• this does not mean that the images are not distorted after rectification

3D Computer Vision: VII. Stereovision (p. 156/197) R. Šára, CMP; rev. 13–Dec–2022

▶Primitive Rectification

Goal: Given fundamental matrix F, derive some easy-to-obtain rectification homographies H1, H2

1. Let the SVD of F be UDV⊤ = F, where D = diag(1, d2, 0), 1 ≥ d2 > 0

2. Write D as D = A⊤F∗ B for some regular A, B. For instance (F∗ is given →155)

A =

0 0 1
0 −d 0
1 0 0

, B =

0 0 1
1 0 0
0 d 0

3. Then

F = UDV⊤ = UA⊤︸ ︷︷ ︸
Ĥ

⊤
2

F∗ BV⊤︸ ︷︷ ︸
Ĥ1

= Ĥ
⊤
2 F∗ Ĥ1 Ĥ1, Ĥ2 orthogonal

and the primitive rectification homographies are

Ĥ2 = AU⊤, Ĥ1 = BV⊤

⊛ P1; 1pt: derive some other admissible A, B

• Hence: Rectification homographies do exist →155

• there are other primitive rectification homographies, these suggested are just easy to obtain

3D Computer Vision: VII. Stereovision (p. 157/197) R. Šára, CMP; rev. 13–Dec–2022

▶The Set of All Rectification Homographies

Proposition 1 Homographies A1 and A2 are rectification-preserving if the images stay rectified, i.e. if
A2

−⊤ F∗ A1
−1 ≃ F∗, which gives

A1 =

l1 l2 l3
0 sv tv
0 q 1

 , A2 =

r1 r2 r3
0 sv tv
0 q 1

 ,

uv (35)

where sv ̸= 0, tv, l1 ̸= 0, l2, l3, r1 ̸= 0, r2, r3, q are 9 free parameters.

general transformation standard

l1, r1 horizontal scales l1 = r1

l2, r2 horizontal shears l2 = r2

l3, r3 horizontal shifts l3 = r3

q common special projective

sv common vertical scale

tv common vertical shift

9DoF 9− 3 = 6DoF

• q is due to a rotation about the baseline proof: find a rotation G that brings K to upper triangular form

via RQ decomposition: A1K
∗
1 = K̂1G and A2K

∗
2 = K̂2G• sv changes the focal length

3D Computer Vision: VII. Stereovision (p. 158/197) R. Šára, CMP; rev. 13–Dec–2022

The Rectification Group

Corollary for Proposition 1 Let H̄1 and H̄2 be (primitive or other) rectification homographies. Then
H1 = A1H̄1, H2 = A2H̄2 are also rectification homographies, where A1, A2 are as in (35).

Proposition 2 Pairs of rectification-preserving homographies (A1, A2) form a group with group operation
(A′

1, A
′
2) ◦ (A1, A2) = (A′

1 A1, A
′
2 A2).

Proof:

• closure by Proposition 1
• associativity by matrix multiplication
• identity belongs to the set

• inverse element belongs to the set by A⊤
2 F∗A1 ≃ F∗ ⇔ F∗ ≃ A−⊤

2 F∗A−1
1

3D Computer Vision: VII. Stereovision (p. 159/197) R. Šára, CMP; rev. 13–Dec–2022

▶Primitive Rectification Suffices for Calibrated Cameras

Obs: calibrated cameras: d = 1 ⇒ Ĥ1, Ĥ2 (→157) are orthonormal

1. determine primitive rectification homographies (Ĥ1, Ĥ2) from the essential matrix

2. choose a suitable common calibration matrix K, e.g. from K1, K2:

K =

f 0 u0

0 f v0
0 0 1

, f =
1

2
(f1 + f2), u0 =

1

2
(u1

0 + u2
0), etc.

3. the final rectification homographies applied as Pi 7→ Hi Pi are

H1 = KĤ1K
−1
1 , H2 = KĤ2K

−1
2

• we got a standard stereo pair (→156) and non-negative disparity:

let K−1
i Pi = Ri

[
I −Ci

]
, i = 1, 2 note we started from E, not F

H1P1 = KĤ1K
−1
1 P1 = KBV⊤R1︸ ︷︷ ︸

R∗

[
I −C1

]
= KR∗ [I −C1

]
A, B from →157

H2P2 = KĤ2K
−1
2 P2 = KAU⊤R2︸ ︷︷ ︸

R∗

[
I −C2

]
= KR∗ [I −C2

]
• one can prove that BV⊤R1 = AU⊤R2 with the help of essential matrix decomposition (13)
• Note that points at infinity project by KR∗ in both cameras ⇒ they have zero disparity (→165), hence. . .

3D Computer Vision: VII. Stereovision (p. 160/197) R. Šára, CMP; rev. 13–Dec–2022

▶Summary & Remarks: Linear Rectification

. . . It follows: Standard rectification homographies reproject
onto a common image plane parallel to the baseline

X

C1 C2

f

• rectification is done with a pair of homographies (one per image) →154
⇒ projection centers of rectified cameras are equal to the original ones
• binocular rectification: a 9-parameter family of rectification homographies
• trinocular rectification: has 9 or 6 free parameters (depending on additional constrains)
• in general, linear rectification is not possible for more than three cameras

• rectified cameras are in canonical orientation →156
⇒ rectified image projection planes are coplanar

• equal rectified calibration matrices give standard rectification →156
⇒ rectified image projection planes are equal

• primitive rectification is already standard in calibrated cameras →160

• known F used alone does not allow standardization of rectification homographies

• for that we need either of these:

1. projection matrices, or calibrated cameras, or
2. a few points at infinity calibrating k1i, k2i, i = 1, 2, 3 in (34)

3D Computer Vision: VII. Stereovision (p. 161/197) R. Šára, CMP; rev. 13–Dec–2022

Optimal and Non-linear Rectification

Optimal choice for the free parameters

• by minimization of residual image distortion, eg.
[Gluckman & Nayar 2001]

A∗
i = argmin

Ai

∫∫
Ω

(
det J(Ai ◦Hi(x))− 1

)2
dx , i = 1, 2

• by minimization of image information loss
[Matoušek, ICIG 2004]

• non-linear rectification suitable for forward motion
non-parametric: [Pollefeys et al. 1999]

analytic: [Geyer & Daniilidis 2003]

forward egomotion rectified images, Pollefeys’ method

3D Computer Vision: VII. Stereovision (p. 162/197) R. Šára, CMP; rev. 13–Dec–2022

How Difficult Is Stereo?

Centrum för teknikstudier at Malmö Högskola, Sweden The Vyšehrad Fortress, Prague

• top: easy interpretation from even a single image
• bottom left: we have no help from image interpretation
• bottom right: ambiguous interpretation due to a combination of missing texture and occlusion

3D Computer Vision: VII. Stereovision (p. 163/197) R. Šára, CMP; rev. 13–Dec–2022

A Summary of Our Observations and an Outlook

1. simple matching algorithms do not work
• the success of a model-free stereo matching is unlikely →153
• without scene recognition or use high-level constraints the problem seems difficult

2. stereopsis requires image interpretation in sufficiently complex scenes or another-modality measurement

we have a tradeoff: model strength ↔ universality

Outlook:

1. represent the occlusion constraint: correspondences are not independent due to occlusions

• disparity in rectified images
• uniqueness as an occlusion constraint

2. represent piecewise continuity the weakest of interpretations; piecewise: object boundaries

• ordering as a weak continuity model

3. use a consistent framework
• finding the most probable solution (MAP)

3D Computer Vision: VII. Stereovision (p. 164/197) R. Šára, CMP; rev. 13–Dec–2022

▶Binocular Disparity in a Standard Stereo Pair

top view in xz plane

m2

X

b
2 x

z cotα1 z cotα2

m1

u2

z

C2C1 b

fz

u1

α2α1 x

f

y

C1,2

y

X

m1,2

v

z

side view in yz plane

• Assumptions: single image line, standard camera pair

b = z cotα1 − z cotα2 b =
b

2
+ x− z cotα2

u1 = f cotα1 u2 = f cotα2

• eliminate α1, α2 and obtain:

X = (x, y, z) from disparity d = u1 − u2:

z =
b f

d
, x =

b

d

u1 + u2

2
, y =

b v

d

f , d, u, v in pixels, b, x, y, z in meters

Observations

• constant disparity surface is a frontoparallel plane

• distant points have small disparity

• relative error in z is large for small disparity

1

z

dz

dd
= −

1

d

• increasing the baseline or the focal length increases disparity and
reduces the error

3D Computer Vision: VII. Stereovision (p. 165/197) R. Šára, CMP; rev. 13–Dec–2022

Structural Ambiguity in Stereovision

• suppose we can recognize local matches independently but have no scene model
• lack of an occlusion model
• lack of a continuity model

⇒ structural ambiguity in the presence of repetitions (or lack
of texture)

left image right image

C 1

2

3

B−2

A−1

C−3

A

B

A

B

C 1

3

C−3

B−1

A−2

2

interpretation 1 interpretation 2

3D Computer Vision: VII. Stereovision (p. 166/197) R. Šára, CMP; rev. 13–Dec–2022

▶Understanding Basic Occlusion Types

surface pt.

r3occluded

transparent

r1

r2

l

X1

Y2 Y3
X2

Y1 X
half occlusion mutual occlusion

• surface point at the intersection of rays l and r1 occludes a world point at the intersection (l, r3) and implies the world
point (l, r2) is transparent, therefore

(l, r3) and (l, r2) are excluded by (l, r1)

• in half-occlusion, every 3D point such as X1 or X2 is excluded by a binocularly visible surface point such as Y1, Y2, Y3

⇒ decisions on correspondences are not independent

• in mutual occlusion this is no longer the case: any X in the yellow zone above is not excluded
⇒ decisions inside the zone are independent on the rest

m
u

tu
a

lly
−

o
c
c
lu

d
e

d

h
a

lf
−

o
c
c
lu

d
e

d

3D Computer Vision: VII. Stereovision (p. 167/197) R. Šára, CMP; rev. 13–Dec–2022

▶Matching Table

Based on scene opacity and the observation on mutual exclusion we expect each pixel to match at most once.

scene

2 43

C1 C2

π1 π2

4321 1

�1
�2

1

1 2 3 4 5

5

4

3

2

rays in epipolar plane matching table T

matching table

• rows and columns represent optical rays

• nodes: possible correspondence pairs

• full nodes: matches

• numerical values associated with nodes: descriptor similarities see next

3D Computer Vision: VII. Stereovision (p. 168/197) R. Šára, CMP; rev. 13–Dec–2022

▶Constructing An Image Similarity Cost

• let pi = (l, r) and L(l), R(r) be (left, right) image descriptors (vectors) constructed from local image neighborhood
windows

in matching table T :

�2l
r

�1
‘block’ in the left image 7→ ‘a set of random-variable samples’:L(l)l

• a simple block (dis-)similarity is SAD(l, r) = ∥L(l)−R(r)∥1 L1 metric (sum of absolute differences; smaller is better)

• a scaled-descriptor (dis-)similarity is sim(l, r) =
∥L(l)−R(r)∥2

σ2
I (l, r)

smaller is better

• σ2
I – the difference scale; a suitable (plug-in) estimate is 1

2

[
var
(
L(l)

)
+ var

(
R(r)

)]
, giving

sim(l, r) = 1−
2 cov

(
L(l),R(r)

)
var
(
L(l)

)
+ var

(
R(r)

)︸ ︷︷ ︸
ρ
(
L(l),R(r)

)
var(·), cov(·) is sample (co-)variance,
not invariant to scale difference

(36)

• ρ – MNCC – Moravec’s Normalized Cross-Correlation similarity bigger is better [Moravec 1977]

ρ2 ∈ [0, 1], sign ρ ∼ ‘phase’

• another successful (dis-)similarity is the Hamming Distance over the Census Transform related to local binary patterns

3D Computer Vision: VII. Stereovision (p. 169/197) R. Šára, CMP; rev. 13–Dec–2022

How A Scene Looks in The Filled-In Matching Table

object left image right image

5× 5 window 11× 11 window 3× 3 window

a good tradeoff occlusion artefacts undiscriminable

• MNCC ρ used
(α = 1.5, β = 1) →176

• high-similarity structures correspond to
scene objects

Things to notice:

constant disparity

• a diagonal in matching table

• zero disparity is the main diagonal
assuming standard stereopair

depth discontinuity

• horizontal or vertical jump in matching table

large image window

• similarity values have better discriminability

• worse occlusion localization

repeated texture

• horizontal and vertical block repetition

3D Computer Vision: VII. Stereovision (p. 170/197) R. Šára, CMP; rev. 13–Dec–2022

Image Point Descriptors And Their Similarity

Descriptors: Image points are tagged by their (viewpoint-invariant) physical properties:

• texture window [Moravec 77]
• a descriptor like DAISY [Tola et al. 2010]
• learned descriptors
• reflectance profile under a moving illuminant
• photometric ratios [Wolff & Angelopoulou 93-94]
• dual photometric stereo [Ikeuchi 87]
• polarization signature
• . . .

• similar points are more likely to match
• image similarity values for all ‘match candidates’ give the 3D matching table also called: ‘disparity volume’

click for video

3D Computer Vision: VII. Stereovision (p. 171/197) R. Šára, CMP; rev. 13–Dec–2022

▶Marroquin’s Winner Take All (WTA) Matching Algorithm

Alg: Per left-image pixel: The most SAD-similar pixel along the right epipolar line →169

1. select disparity range this is a critical weak point

2. represent the matching table diagonals in a compact form

1

2

3

4

5

6

d = 1

d = 2

d = 0

61 2 3 4 5

d = 0

d = 1

d = 2

3. use an ‘image sliding & cost aggregation algorithm’

4. take the maximum over disparities d

5. threshold results by the maximal allowed SAD dissimilarity

3D Computer Vision: VII. Stereovision (p. 172/197) R. Šára, CMP; rev. 13–Dec–2022

by d = 1 pixel
imrij image shifted

imlij

|imlij − imrij| ∑
win(·)

A Matlab Code for WTA

function dmap = marroquin(iml, imr, disparityRange)
% iml, imr - rectified gray-scale images
% disparityRange - non-negative disparity range

% (c) Radim Sara (sara@cmp.felk.cvut.cz) FEE CTU Prague, 10 Dec 12

thr = 20; % bad match rejection threshold
r = 2;
winsize = 2*r+[1 1]; % 5x5 window (neighborhood) for r=2
N = boxing(ones(size(iml)), winsize); % the size of each local patch is

% N = (2r+1)^2 except for boundary pixels

% --- compute dissimilarity per pixel and disparity --->

for d = 0:disparityRange % cycle over all disparities
slice = abs(imr(:,1:end-d) - iml(:,d+1:end)); % pixelwise dissimilarity (unscaled SAD)
V(:,d+1:end,d+1) = boxing(slice, winsize)./N; % window aggregation

end

% --- collect winners, threshold, output disparity map --->

[cmap,dmap] = min(V,[],3); % collect winners and their dissimilarities
dmap(cmap > thr) = NaN; % mask-out high dissimilarity pixels

end % of marroquin

function c = boxing(im, wsz)
% if the mex is not found, run this slow version:
c = conv2(ones(1,wsz(1)), ones(wsz(2),1), im, ’same’);

end % of boxing

3D Computer Vision: VII. Stereovision (p. 173/197) R. Šára, CMP; rev. 13–Dec–2022

WTA: Some Results

thr = 20 thr = 10

• results are fairly bad
• false matches in textureless image regions and on repetitive structures (book shelf)
• a more restrictive threshold (thr = 10) does not work as expected
• we searched the true disparity range, results get worse if the range is set wider
• chief failure reasons:

• unnormalized image dissimilarity does not work well
• no occlusion model (it just ignores the occlusion structure we have discussed →167)

3D Computer Vision: VII. Stereovision (p. 174/197) R. Šára, CMP; rev. 13–Dec–2022

▶A Principled Approach to Similarity

Empirical Distribution of MNCC ρ for Matches (green) and Non-Matches (red)

• histograms of ρ computed from 5× 5 correlation window ρ: bigger is better

• KITTI dataset

• 4.2 · 106 ground-truth (LiDAR) matches for p1(ρ) (green),
• 4.2 · 106 random non-matches for p0(ρ) (red)

Obs:
• non-matches (red) may have arbitrarily large ρ

• matches (green) may have arbitrarily low ρ

• ρ = 1 is improbable for matches

3D Computer Vision: VII. Stereovision (p. 175/197) R. Šára, CMP; rev. 13–Dec–2022

Match Likelihood

• ρ is just a normalized measurement

• we need a probability distribution on [0, 1], e.g. Beta
distribution

p1(ρ) =
1

B(α, β)
|ρ|α−1(1− |ρ|)β−1

• note that uniform distribution is obtained for α = β = 1

• when α = 2 and β = 1 then p1(·) = 2|ρ|

negative log-likelihood V1 (blue) and − log V1 (red)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

B
e

(
;

,
)

-2

0

2

4

6

8

10

-l
o

g
(B

e
(

;
,

))

=10, =1.5

• the mode is at
√

α−1
α+β−2

≈ 0.9733 for α = 10, β = 1.5

• if we chose β = 1 then the mode was at ρ = 1
• perfect similarity is ‘suspicious’ (depends on expected camera noise level)
• from now on we will work with negative log-likelihood cost

V1

(
ρ(l, r)

)
= − log p1

(
ρ(l, r)

)
smaller is better (37)

• we should also define similarity (and negative log-likelihood V0(ρ(l, r))) for non-matches

3D Computer Vision: VII. Stereovision (p. 176/197) R. Šára, CMP; rev. 13–Dec–2022

▶A Principled Approach to Matching: Formulating ‘What We Want’

• given matching M in table T , what is the likelihood of observed data D?

• data – all cost pairs (V0, V1) in the matching table T

• matches – pairs pi = (li, ri) ∈ M ⊂ T , i = 1, . . . , n

• matching: partitioning matching table T to matched M and excluded E pairs

T = M ∪ E, M ∩ E = ∅

• matching cost (negative log-likelihood, smaller is better) constant number of variables in T

V (D | M,T) =
∑
p∈M

V1(D | p) +
∑

p∈T\M

V0(D | p)

V1(D | p) – negative log-probability of data D at matched pixel p (37)
V0(D | p) – ditto at unmatched pixel p →175 and →176

• matching problem
M∗ = arg min

M∈M(T)
V (D | M,T)

M(T) – the set of all matchings in table T

• symmetric: formulated over pairs, invariant to left ↔ right image swap unlike in WTA

3D Computer Vision: VII. Stereovision (p. 177/197) R. Šára, CMP; rev. 13–Dec–2022

▶(cont’d) Log-Likelihood Ratio

• we need to reduce matching to a standard polynomial-complexity problem

• convert the matching cost to an ‘easier’ sum

V (D | M,T) =
∑
p∈M

V1(D | p) +
∑

p∈T\M

V0(D | p) +

0︷ ︸︸ ︷∑
p∈M

V0(D | p)−
∑
p∈M

V0(D | p)

=
∑
p∈M

(
V1(D | p)− V0(D | p)

)
︸ ︷︷ ︸

−L(D | p)

+
∑

p∈T\M

V0(D | p) +
∑
p∈M

V0(D | p)

︸ ︷︷ ︸∑
p∈T

V0(D | p) = const

• hence

arg min
M∈M(T)

V (D | M) = arg max
M∈M(T)

∑
p∈M

L(D | p) (38)

L(D | p) – logarithm of matched-to-unmatched likelihood ratio (bigger is better)

why this way: we want to use maximum-likelihood on the entire T

• (38) is max-cost matching (maximum assignment) for the maximum-likelihood (ML) matching problem
• use Hungarian (Munkres) algorithm and threshold the result with τ : L(D | p) > τ ≥ 0

or approximate the problem by sacrificing symmetry to speed and use dynamic programming

3D Computer Vision: VII. Stereovision (p. 178/197) R. Šára, CMP; rev. 13–Dec–2022

Some Results for the Maximum-Likelihood (ML) Matching

• unlike the WTA we can efficiently control the density/accuracy tradeoff with τ black = no match

• middle row: threshold τ for L(D | p) set to achieve error rate of 3% (and 61% density results)

• bottom row: threshold τ set to achieve density of 76% (and 4.3% error rate results)

3D Computer Vision: VII. Stereovision (p. 179/197) R. Šára, CMP; rev. 13–Dec–2022

▶Basic Stereoscopic Matching Models

• notice many small isolated errors in the ML matching
• Q: how to reduce the noisiness? A: a stronger model

Potential models for M (from weaker to stronger)

1. Uniqueness: Every image point matches at most once

• excludes semi-transparent objects
• used in the ML matching algorithm (but not in the WTA algorithm)

2. Monotonicity: Matched pixel ordering is preserved →181

• for all (i, j) ∈ M, (k, l) ∈ M, k > i ⇒ l > j
Notation: (i, j) ∈ M or j = M(i) – left-image pixel i matches right-image pixel j

• excludes thin objects close to the cameras
• used in 3-Label Dynamic Programming (3LDP) [SP]

3. Coherence: Objects occupy well-defined 3D volumes

• concept by [Prazdny 85]
• algorithms are based on image/disparity map segmentation
• a popular model (segment-based, bilateral filtering and their successors)
• used in Stable Segmented 3LDP [Aksoy et al. PRRS 2008]

4. (Piecewise) binocular continuity: The scene images continuously w/o self-occlusions

• disparities do not differ much in neighboring pixels (except at object boundaries)
• full binocular continuity too strong, except in some applications
• piecewise binocular continuity is combined with monotonicity in 3LDP

incoherent

i

k

j l

monotonic coherent

non-monotonic coherent

3D Computer Vision: VII. Stereovision (p. 180/197) R. Šára, CMP; rev. 13–Dec–2022

Binocular Discontinuities in Matching Table

right image pixel index

le
ft

 i
m

a
g

e
 p

ix
e

l
in

d
e

x

depth discontinuity in left image

depth discontinuity in right image

invisible

dk critical disparity

monocularly visible points

binocularly visible background pts violating ordering

binocularly visible foreground points

l ∈ I

r ∈ J
d
k

dk

• this leads to the concept of ‘forbidden zone’

3D Computer Vision: VII. Stereovision (p. 181/197) R. Šára, CMP; rev. 13–Dec–2022

GCS

▶Formally: Uniqueness and Ordering in Matching Table T

X-zone and F -zone

�2
�1X(p)

F (p)pi pj
pj /∈ X(pi), pj /∈ F (pi)

• Uniqueness Constraint:

A set of pairs M = {pi}ni=1, pi ∈ T is a matching iff

∀pi, pj ∈ M : pj /∈ X(pi).

X-zone, pi ̸∈ X(pi)

• Ordering Constraint:

Matching M is monotonic iff

∀pi, pj ∈ M : pj /∈ F (pi).

F -zone, pi ̸∈ F (pi)

• ordering constraint: matched points form a monotonic set in both images

• ordering is a powerful constraint: in n× n table we have
monotonic matchings O(4n) ≪ O(n!) all matchings

⊛ 2: how many are there maximal monotonic matchings? (e.g. 27 for n = 4; hard!)

• uniqueness constraint is a basic occlusion model

• ordering constraint is a weak continuity model and partly also an occlusion model

• monotonic matching can be found by dynamic programming

3D Computer Vision: VII. Stereovision (p. 182/197) R. Šára, CMP; rev. 13–Dec–2022

Some Results: AppleTree

left image right image ML →178

3LDP w/ordering näıve DP Stable Segmented 3LDP
[SP] [Cox et al. 1992] [Aksoy et al. PRRS 2008]

• 3LDP parameters αi, Ve learned on Middlebury stereo data http://vision.middlebury.edu/stereo/

3D Computer Vision: VII. Stereovision (p. 183/197) R. Šára, CMP; rev. 13–Dec–2022

http://vision.middlebury.edu/stereo/

Some Results: Larch

left image right image ML →178

3LDP w/ordering [SP] näıve DP Stable Segmented 3LDP

• näıve DP: no mutual occlusion model, ignores symmetry, has no similarity distribution model, ignores T \M
• but even 3LDP has errors in mutually occluded region
• Stable Segmented 3LDP: few errors in mutually occluded region since it uses a coherence model

3D Computer Vision: VII. Stereovision (p. 184/197) R. Šára, CMP; rev. 13–Dec–2022

Algorithm Comparison

Marroquin’s Winner-Take-All (WTA →172)

• the ur-algorithm very weak model

• dense disparity map
• O(N3) algorithm, simple but it rarely works

Maximum Likelihood Matching (ML →178)

• semi-dense disparity map
• many small isolated errors
• models basic occlusion
• O(N3 log(NV)) algorithm max-flow by cost scaling

MAP with Min-Cost Labeled Path (3LDP)

• semi-dense disparity map
• models occlusion in flat, piecewise binocularly continuous

scenes
• has ‘illusions’ if ordering does not hold
• O(N3) algorithm

Stable Segmented 3LDP

• better than 3LDP fewer errors at any given density

• O(N3 logN) algorithm
• requires image segmentation itself a difficult task

0.5 1 2 3 5 10 20

2

5

10

20

30

50

70

80

90

95

98

inaccuracy [%]

d
e
n
s
it
y
 [
%

]

ROC curves and their average error rate bounds

3LDP (3.65 ± 0.26)

WTA (4.71 ± 0.17)

ML (4.60 ± 0.65)

GCS (4.29 ± 1.47)

• ROC-like curve captures the density/accuracy
tradeoff

• numbers: AUC (smaller is better)

• GCS is the one used in the exercises

• more algorithms at
http://vision.middlebury.edu/stereo/
(good luck!)

3D Computer Vision: VII. Stereovision (p. 185/197) R. Šára, CMP; rev. 13–Dec–2022

http://vision.middlebury.edu/stereo/

A Summary of This Course Highlights

• homography as a two-image model

• epipolar geometry as a two-image model
• core algorithms for 3D vision:

• simple intrinsic calibration methods
• 6-pt alg for camera resection and 3-pt alg for exterior orientation (calibrated resection)
• 7-pt alg for fundamental matrix, 5-pt alg for essential matrix
• essential matrix decomposition to rotation and translation
• efficient accurate triangulation
• robust matching by RANSAC sampling
• camera system reconstruction
• efficient bundle adjustment
• stereoscopic matching basics

• statistical robustness as a way to work with partially unknown information

What can we do with these tools?

• perspective image rectification
• 3D scene reconstruction
• motion capture
• visual odometry
• robotic self-localization and mapping (SLAM) for navigation and motion planning

we did not cover 3D aggregation in scene maps

3D Computer Vision: VIII. Stereovision (p. 197/197) R. Šára, CMP; rev. 13–Dec–2022

Thank You

−2 −1 0 1 2 3 4 5 6 7 8 9

−1

0

1

2

3

4

5

u
v

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

p∞
p

p0

p1

su
p
p
o
rtin

g
 lin

e

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

p

p∞

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

B

A

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

−7,11

−8,10

−9,9

−5,11

−6,10

−7,9

−8,8

−3,11

−4,10

−5,9

−6,8

−7,7

−8,6

−9,5

−1,11

−2,10

−3,9

−4,8

−5,7

−6,6

−7,5

−8,4

1,11

0,10

−1,9

−2,8

−3,7

−4,6

−5,5

−6,4

−7,3

3,11

2,10

1,9

0,8

−1,7

−2,6

−3,5

−4,4

−5,3

3,9

2,8

1,7

0,6

−1,5

−2,4

−3,3

3,7

2,6

1,5

0,4

−1,3

3,5

2,4

1,3

4,4

3,3

−6,12 −4,12

−9,7

−2,12

−10,6

0,12 2,12

−6,2

4,10

−4,2

4,8

−2,2

4,6

0,2 2,2

−10,8

1,13

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

 1

 2 3
 4 5

 6

 7 8 910111213

1415
1617

18

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

||x||

p
(|

|x
||
 |
 r

 =
 1

)

σ = 0.25

σ = 0.5

σ = 1

σ = 2

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

||x||

p
(|

|x
||
 |
 r

 =
 1

)

σ = 0.25

σ = 0.5

σ = 1

σ = 2

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

||x||

p
(|

|x
||
 |
 r

 =
 1

)

σ = 0.25

σ = 0.5

σ = 1

σ = 2

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

10
−1

10
0

10
0

10
2

10
4

10
6

10
8

ε (inlier fraction)

N
 (

p
ro

p
o
s
a
ls

)

s = 7

P=0.5

P=0.8

P=0.99

P=0.999

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

m
u

tu
a

lly
−

o
c
c
lu

d
e

d

h
a

lf
−

o
c
c
lu

d
e

d

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

0.5 1 2 3 5 10 20

2

5

10

20

30

50

70

80

90

95

98

inaccuracy [%]

d
e

n
s
it
y
 [

%
]

ROC curves and their average error rate bounds

3LDP (3.65 ± 0.26)

WTA (4.71 ± 0.17)

ML (4.60 ± 0.65)

GCS (4.29 ± 1.47)

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022

	Perspective Camera
	Basic Entities: Points, Lines
	Homography: Mapping Acting on Points and Lines
	Canonical Perspective Camera
	Changing the Outer and Inner Reference Frames
	Projection Matrix Decomposition
	Anatomy of Linear Perspective Camera
	Vanishing Points and Lines

	Computing with a Single Camera
	Calibration: Internal Camera Parameters from Vanishing Points and Lines
	Camera Resection: Projection Matrix from 6 Known Points
	Exterior Orientation: Camera Rotation and Translation from 3 Known Points
	Relative Orientation Problem: Rotation and Translation between Two Point Sets

	Computing with a Camera Pair
	Camera Motions Inducing Epipolar Geometry, Fundamental and Essential Matrices
	Estimating Fundamental Matrix from 7 Correspondences
	Estimating Essential Matrix from 5 Correspondences
	Triangulation: 3D Point Position from a Pair of Corresponding Points

	Optimization for 3D Vision
	The Concept of Error for Epipolar Geometry
	The Golden Standard for Triangulation
	Levenberg-Marquardt's Iterative Optimization
	Optimizing Fundamental Matrix
	The Correspondence Problem
	Optimization by Random Sampling

	3D Structure and Camera Motion
	Reconstructing Camera System: From Triples and from Pairs
	Bundle Adjustment

	Stereovision
	Introduction
	Epipolar Rectification
	Binocular Disparity and Matching Table
	Image Similarity
	Marroquin's Winner Take All Algorithm
	Maximum Likelihood Matching
	Uniqueness and Ordering as Occlusion Models

	End of Slides

