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Center for Machine Perception
Department of Cybernetics

Faculty of Electrical Engineering
Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/tdv/start

http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz

phone ext. 7203

rev. December 13, 2022

Open Informatics Master’s Course

https://cw.fel.cvut.cz/wiki/courses/tdv/start
h
http://cmp.felk.cvut.cz
h
mailto:sara@cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz


▶A Principled Approach to Similarity

Empirical Distribution of MNCC ρ for Matches (green) and Non-Matches (red)

• histograms of ρ computed from 5× 5 correlation window ρ: bigger is better

• KITTI dataset

• 4.2 · 106 ground-truth (LiDAR) matches for p1(ρ) (green),
• 4.2 · 106 random non-matches for p0(ρ) (red)

Obs:
• non-matches (red) may have arbitrarily large ρ

• matches (green) may have arbitrarily low ρ

• ρ = 1 is improbable for matches
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Match Likelihood

• ρ is just a normalized measurement

• we need a probability distribution on [0, 1], e.g. Beta
distribution

p1(ρ) =
1

B(α, β)
|ρ|α−1(1− |ρ|)β−1

• note that uniform distribution is obtained for α = β = 1

• when α = 2 and β = 1 then p1(·) = 2|ρ|

negative log-likelihood V1 (blue) and − log V1 (red)
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• the mode is at
√

α−1
α+β−2

≈ 0.9733 for α = 10, β = 1.5

• if we chose β = 1 then the mode was at ρ = 1
• perfect similarity is ‘suspicious’ (depends on expected camera noise level)
• from now on we will work with negative log-likelihood cost

V1

(
ρ(l, r)

)
= − log p1

(
ρ(l, r)

)
smaller is better (37)

• we should also define similarity (and negative log-likelihood V0(ρ(l, r))) for non-matches
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▶A Principled Approach to Matching: Formulating ‘What We Want’

• given matching M in table T , what is the likelihood of observed data D?

• data – all cost pairs (V0, V1) in the matching table T

• matches – pairs pi = (li, ri) ∈ M ⊂ T , i = 1, . . . , n

• matching: partitioning matching table T to matched M and excluded E pairs

T = M ∪ E, M ∩ E = ∅

• matching cost (negative log-likelihood, smaller is better) constant number of variables in T

V (D | M,T ) =
∑
p∈M

V1(D | p) +
∑

p∈T\M

V0(D | p)

V1(D | p) – negative log-probability of data D at matched pixel p (37)
V0(D | p) – ditto at unmatched pixel p →175 and →176

• matching problem
M∗ = arg min

M∈M(T )
V (D | M,T )

M(T ) – the set of all matchings in table T

• symmetric: formulated over pairs, invariant to left ↔ right image swap unlike in WTA
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▶(cont’d) Log-Likelihood Ratio

• we need to reduce matching to a standard polynomial-complexity problem

• convert the matching cost to an ‘easier’ sum

V (D | M,T ) =
∑
p∈M

V1(D | p) +
∑

p∈T\M

V0(D | p) +

0︷ ︸︸ ︷∑
p∈M

V0(D | p)−
∑
p∈M

V0(D | p)

=
∑
p∈M

(
V1(D | p)− V0(D | p)

)
︸ ︷︷ ︸

−L(D | p)

+
∑

p∈T\M

V0(D | p) +
∑
p∈M

V0(D | p)

︸ ︷︷ ︸∑
p∈T

V0(D | p) = const

• hence

arg min
M∈M(T )

V (D | M) = arg max
M∈M(T )

∑
p∈M

L(D | p) (38)

L(D | p) – logarithm of matched-to-unmatched likelihood ratio (bigger is better)

why this way: we want to use maximum-likelihood on the entire T

• (38) is max-cost matching (maximum assignment) for the maximum-likelihood (ML) matching problem
• use Hungarian (Munkres) algorithm and threshold the result with τ : L(D | p) > τ ≥ 0

or approximate the problem by sacrificing symmetry to speed and use dynamic programming
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Some Results for the Maximum-Likelihood (ML) Matching

• unlike the WTA we can efficiently control the density/accuracy tradeoff with τ black = no match

• middle row: threshold τ for L(D | p) set to achieve error rate of 3% (and 61% density results)

• bottom row: threshold τ set to achieve density of 76% (and 4.3% error rate results)
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▶Basic Stereoscopic Matching Models

• notice many small isolated errors in the ML matching
• Q: how to reduce the noisiness? A: a stronger model

Potential models for M (from weaker to stronger)

1. Uniqueness: Every image point matches at most once

• excludes semi-transparent objects
• used in the ML matching algorithm (but not in the WTA algorithm)

2. Monotonicity: Matched pixel ordering is preserved →181

• for all (i, j) ∈ M, (k, l) ∈ M, k > i ⇒ l > j
Notation: (i, j) ∈ M or j = M(i) – left-image pixel i matches right-image pixel j

• excludes thin objects close to the cameras
• used in 3-Label Dynamic Programming (3LDP) [SP]

3. Coherence: Objects occupy well-defined 3D volumes

• concept by [Prazdny 85]
• algorithms are based on image/disparity map segmentation
• a popular model (segment-based, bilateral filtering and their successors)
• used in Stable Segmented 3LDP [Aksoy et al. PRRS 2008]

4. (Piecewise) binocular continuity: The scene images continuously w/o self-occlusions

• disparities do not differ much in neighboring pixels (except at object boundaries)
• full binocular continuity too strong, except in some applications
• piecewise binocular continuity is combined with monotonicity in 3LDP

incoherent

i

k

j l

monotonic coherent

non-monotonic coherent
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Binocular Discontinuities in Matching Table

right image pixel index
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depth discontinuity in left image

depth discontinuity in right image

invisible

dk critical disparity

monocularly visible points

binocularly visible background pts violating ordering

binocularly visible foreground points

l ∈ I

r ∈ J
d
k

dk

• this leads to the concept of ‘forbidden zone’
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▶Formally: Uniqueness and Ordering in Matching Table T

X-zone and F -zone

�2
�1X(p)

F (p)pi pj
pj /∈ X(pi), pj /∈ F (pi)

• Uniqueness Constraint:

A set of pairs M = {pi}ni=1, pi ∈ T is a matching iff

∀pi, pj ∈ M : pj /∈ X(pi).

X-zone, pi ̸∈ X(pi)

• Ordering Constraint:

Matching M is monotonic iff

∀pi, pj ∈ M : pj /∈ F (pi).

F -zone, pi ̸∈ F (pi)

• ordering constraint: matched points form a monotonic set in both images

• ordering is a powerful constraint: in n× n table we have
monotonic matchings O(4n) ≪ O(n!) all matchings

⊛ 2: how many are there maximal monotonic matchings? (e.g. 27 for n = 4; hard!)

• uniqueness constraint is a basic occlusion model

• ordering constraint is a weak continuity model and partly also an occlusion model

• monotonic matching can be found by dynamic programming
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Some Results: AppleTree

left image right image ML →178

3LDP w/ordering näıve DP Stable Segmented 3LDP
[SP] [Cox et al. 1992] [Aksoy et al. PRRS 2008]

• 3LDP parameters αi, Ve learned on Middlebury stereo data http://vision.middlebury.edu/stereo/
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Some Results: Larch

left image right image ML →178

3LDP w/ordering [SP] näıve DP Stable Segmented 3LDP

• näıve DP: no mutual occlusion model, ignores symmetry, has no similarity distribution model, ignores T \M
• but even 3LDP has errors in mutually occluded region
• Stable Segmented 3LDP: few errors in mutually occluded region since it uses a coherence model
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Algorithm Comparison

Marroquin’s Winner-Take-All (WTA →172)

• the ur-algorithm very weak model

• dense disparity map
• O(N3) algorithm, simple but it rarely works

Maximum Likelihood Matching (ML →178)

• semi-dense disparity map
• many small isolated errors
• models basic occlusion
• O(N3 log(NV )) algorithm max-flow by cost scaling

MAP with Min-Cost Labeled Path (3LDP)

• semi-dense disparity map
• models occlusion in flat, piecewise binocularly continuous

scenes
• has ‘illusions’ if ordering does not hold
• O(N3) algorithm

Stable Segmented 3LDP

• better than 3LDP fewer errors at any given density

• O(N3 logN) algorithm
• requires image segmentation itself a difficult task
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ROC curves and their average error rate bounds

 

 

3LDP (3.65 ± 0.26)

WTA (4.71 ± 0.17)

ML (4.60 ± 0.65)

GCS (4.29 ± 1.47)

• ROC-like curve captures the density/accuracy
tradeoff

• numbers: AUC (smaller is better)

• GCS is the one used in the exercises

• more algorithms at
http://vision.middlebury.edu/stereo/
(good luck!)
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A Summary of This Course Highlights

• homography as a two-image model

• epipolar geometry as a two-image model
• core algorithms for 3D vision:

• simple intrinsic calibration methods
• 6-pt alg for camera resection and 3-pt alg for exterior orientation (calibrated resection)
• 7-pt alg for fundamental matrix, 5-pt alg for essential matrix
• essential matrix decomposition to rotation and translation
• efficient accurate triangulation
• robust matching by RANSAC sampling
• camera system reconstruction
• efficient bundle adjustment
• stereoscopic matching basics

• statistical robustness as a way to work with partially unknown information

What can we do with these tools?

• perspective image rectification
• 3D scene reconstruction
• motion capture
• visual odometry
• robotic self-localization and mapping (SLAM) for navigation and motion planning

we did not cover 3D aggregation in scene maps
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Thank You
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3LDP (3.65 ± 0.26)

WTA (4.71 ± 0.17)

ML (4.60 ± 0.65)

GCS (4.29 ± 1.47)

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 13–Dec–2022
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