3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/tdv/start

http://cmp.felk.cvut.cz mailto:sara@cmp.felk.cvut.cz phone ext. 7203

rev. November 22, 2022

Open Informatics Master's Course

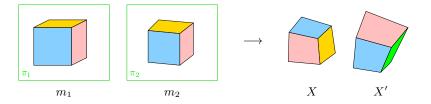
► The Projective Reconstruction Theorem

• We can run an analogical procedure when the cameras remain uncalibrated. But:

Observation: Unless P_j are constrained, then for any number of cameras j = 1, ..., k

when P_i and X are both determined from correspondences (including calibrations K_i), they are given up to a common 3D homography H

(translation, rotation, scale, shear, pure perspectivity)

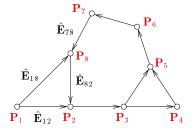


• when cameras are internally calibrated (\mathbf{K}_j known) then \mathbf{H} is restricted to a similarity since it must preserve the calibrations \mathbf{K}_j [H&Z, Secs. 10.2, 10.3], [Longuet-Higgins 1981] (translation, rotation, scale) \rightarrow 134 for an indirect proof

▶ Reconstructing Camera System from Pairs (Correspondence-Free)

Problem: Given a set of p decomposed pairwise essential matrices $\hat{\mathbf{E}}_{ij} = [\hat{\mathbf{t}}_{ij}]_{\times} \hat{\mathbf{R}}_{ij}$ and calibration matrices \mathbf{K}_i reconstruct the camera system \mathbf{P}_i , i = 1, ..., k

 ${\rightarrow}81$ and ${\rightarrow}151$ on representing ${\bf E}$



We construct calibrated camera pairs $\hat{\mathbf{P}}_{ij} \in \mathbb{R}^{6,4}$ see (17)

$$\hat{\mathbf{P}}_{ij} = \begin{bmatrix} \mathbf{K}_i^{-1} \hat{\mathbf{P}}_i \\ \mathbf{K}_j^{-1} \hat{\mathbf{P}}_j \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \hat{\mathbf{R}}_{ij} & \hat{\mathbf{t}}_{ij} \end{bmatrix} \in \mathbb{R}^{6,4}$$

•	singletons i , j correspond to graph nodes	$k \operatorname{nodes}$
٠	pairs ij correspond to graph edges	$p {\rm edges}$

 $\hat{\mathbf{P}}_{ij}$ are in different coordinate systems but these are related by similarities $\hat{\mathbf{P}}_{ij}\mathbf{H}_{ij} = \mathbf{P}_{ij}$ $\mathbf{H}_{ij} \in \mathrm{SIM}(3)$

$$\underbrace{\begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \hat{\mathbf{R}}_{ij} & \hat{\mathbf{t}}_{ij} \end{bmatrix}}_{\in \mathbb{R}^{6,4}} \underbrace{\begin{bmatrix} \mathbf{R}_{ij} & \mathbf{t}_{ij} \\ \mathbf{0}^{\top} & s_{ij} \end{bmatrix}}_{\mathbf{H}_{ij} \in \mathbb{R}^{4,4}} \stackrel{!}{=} \underbrace{\begin{bmatrix} \mathbf{R}_{i} & \mathbf{t}_{i} \\ \mathbf{R}_{j} & \mathbf{t}_{j} \end{bmatrix}}_{\in \mathbb{R}^{6,4}}$$
(29)

- (29) is a system of 24p eqs. in 7p + 6k unknowns
- each $\hat{\mathbf{P}}_i = (\mathbf{R}_i,\,\mathbf{t}_i)$ appears on the RHS as many times as is the degree of node \mathbf{P}_i

eg. $P_5 3 \times$

 $7p \sim (\mathbf{t}_{ij}, \mathbf{R}_{ij}, s_{ij}), \ 6k \sim (\mathbf{R}_i, \mathbf{t}_i)$

▶cont'd

 $\begin{bmatrix} \mathbf{R}_{ij} \\ \hat{\mathbf{R}}_{ij} \mathbf{R}_{ij} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_i \\ \mathbf{R}_j \end{bmatrix} \text{ and } \begin{bmatrix} \mathbf{t}_{ij} \\ \hat{\mathbf{R}}_{ij} \mathbf{t}_{ij} + s_{ij} \hat{\mathbf{t}}_{ij} \end{bmatrix} = \begin{bmatrix} \mathbf{t}_i \\ \mathbf{t}_j \end{bmatrix}$

• \mathbf{R}_{ij} and \mathbf{t}_{ij} can be eliminated:

$$\hat{\mathbf{R}}_{ij}\mathbf{R}_i = \mathbf{R}_j, \qquad \hat{\mathbf{R}}_{ij}\mathbf{t}_i + s_{ij}\hat{\mathbf{t}}_{ij} = \mathbf{t}_j, \qquad s_{ij} > 0$$
(30)

note transformations that do not change these equations

assuming no error in $\hat{\mathbf{R}}_{ij}$

- 1. $\mathbf{R}_i \mapsto \mathbf{R}_i \mathbf{R}$, 2. $\mathbf{t}_i \mapsto \sigma \mathbf{t}_i$ and $s_{ij} \mapsto \sigma s_{ij}$, 3. $\mathbf{t}_i \mapsto \mathbf{t}_i + \mathbf{R}_i \mathbf{t}$
- the global frame is fixed, e.g. by selecting

Eq. (29) implies

R₁ = **I**,
$$\sum_{i=1}^{k} \mathbf{t}_{i} = \mathbf{0}, \quad \frac{1}{p} \sum_{i,j} s_{ij} = 1$$
 (31)

- rotation equations are decoupled from translation equations
- in principle, s_{ij} could correct the sign of $\hat{\mathbf{t}}_{ij}$ from essential matrix decomposition \rightarrow 81 but \mathbf{R}_i cannot correct the α sign in $\hat{\mathbf{R}}_{ij} \Rightarrow$ therefore make sure all points are in front of cameras and constrain $s_{ij} > 0$; \rightarrow 83
- + pairwise correspondences are sufficient
- suitable for well-distributed cameras only (dome-like configurations) otherwise intractable or numerically unstable

Finding The Rotation Component in Eq. (30)

1. Poor Man's Algorithm:

- a) create a Minimum Spanning Tree of ${\cal G}$ from ightarrow 133
- b) propagate rotations from $\mathbf{R}_1 = \mathbf{I}$ via $\hat{\mathbf{R}}_{ij}\mathbf{R}_i = \mathbf{R}_j$ from (30)

2. Rich Man's Algorithm:

Consider $\hat{\mathbf{R}}_{ij}\mathbf{R}_i = \mathbf{R}_j$, $(i, j) \in E(\mathcal{G})$, where \mathbf{R} are a 3×3 rotation matrices Errors per columns c = 1, 2, 3 of \mathbf{R}_j :

$$\mathbf{e}_{ij}^c = \hat{\mathbf{R}}_{ij}\mathbf{r}_i^c - \mathbf{r}_j^c, \qquad \text{for all } i, j$$

.

Solve

$$\arg\min\sum_{(i,j)\in E(\mathcal{G})}\sum_{c=1}^{3} (\mathbf{e}_{ij}^{c})^{\top}\mathbf{e}_{ij}^{c} \quad \text{s.t.} \quad (\mathbf{r}_{i}^{k})^{\top}(\mathbf{r}_{j}^{l}) = \begin{cases} 1 & i=j \land k=l\\ 0 & i\neq j \land k=l\\ 0 & i=j \land k\neq l \end{cases}$$

this is a quadratic programming problem

3. SVD-Lover's Algorithm:

Ignore the constraints and project the solution onto rotation matrices

see next

SVD Algorithm (cont'd)

Per columns c = 1, 2, 3 of \mathbf{R}_j :

$$\hat{\mathbf{R}}_{ij}\mathbf{r}_{i}^{c}-\mathbf{r}_{j}^{c}=\mathbf{0},\qquad\text{for all }i,\ j$$
(32)

- fix c and denote $\mathbf{r}^c = \begin{bmatrix} \mathbf{r}_1^c, \mathbf{r}_2^c, \dots, \mathbf{r}_k^c \end{bmatrix}^\top c$ -th columns of all rotation matrices stacked; $\mathbf{r}^c \in \mathbb{R}^{3k}$
- then (32) becomes $\mathbf{D} \mathbf{r}^c = \mathbf{0}$
- 3p equations for 3k unknowns $\rightarrow p \ge k$

Ex: (k = p = 3) $\hat{\mathbf{E}}_{13}$ $\hat{\mathbf{E}}_{23}$ $\hat{\mathbf{E}}_{23}$ $\hat{\mathbf{R}}_{23}\mathbf{r}_{2}^{c} - \mathbf{r}_{3}^{c} = \mathbf{0}$ $\hat{\mathbf{R}}_{13}\mathbf{r}_{1}^{c} - \mathbf{r}_{3}^{c} = \mathbf{0}$

$$\mathbf{D}\,\mathbf{r}^{c} = \begin{bmatrix} \hat{\mathbf{R}}_{12} & -\mathbf{I} & \mathbf{0} \\ \mathbf{0} & \hat{\mathbf{R}}_{23} & -\mathbf{I} \\ \hat{\mathbf{R}}_{13} & \mathbf{0} & -\mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{r}_{1}^{e} \\ \mathbf{r}_{2}^{e} \\ \mathbf{r}_{3}^{e} \end{bmatrix} = \mathbf{0}$$

• must hold for any c

[Martinec & Pajdla CVPR 2007] D is sparse, use [V,E] = eigs(D'*D,3,0); (Matlab) 3 smallest eigenvectors

in a 1-connected graph we have to fix $\mathbf{r}_1^c = [1, 0, 0]$

because $\|\mathbf{r}^c\| = 1$ is necessary but insufficient $\mathbf{R}^*_i = \mathbf{U}\mathbf{V}^\top$, where $\mathbf{R}_i = \mathbf{U}\mathbf{D}\mathbf{V}^\top$

Idea:

 $\hat{\mathbf{E}}_{12}$

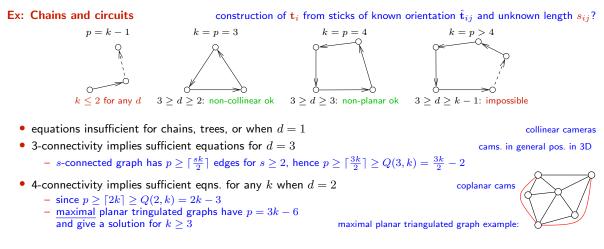
- 1. find the space of all $\mathbf{r}^c \in \mathbb{R}^{3k}$ that solve (32)
- 2. choose 3 unit orthogonal vectors in this space
- 3. find closest rotation matrices per cam. using SVD
- global world rotation is arbitrary

 $\mathbf{D} \in \mathbb{R}^{3p,3k}$

Finding The Translation Component in Eq. (30)

From (30) and (31): $\hat{\mathbf{R}}_{ij}\mathbf{t}_i + s_{ij}\hat{\mathbf{t}}_{ij} - \mathbf{t}_j = \mathbf{0}, \qquad \sum_{i=1}^k \mathbf{t}_i = \mathbf{0}, \qquad \sum_{i,j}^k s_{ij} = p, \qquad s_{ij} > 0, \qquad \mathbf{t}_i \in \mathbb{R}^d$

• in rank $d: d \cdot p + d + 1$ indep. eqns for $d \cdot k + p$ unknowns $\rightarrow p \ge \frac{d(k-1)-1}{d-1} \stackrel{\text{def}}{=} Q(d,k)$



cont'd

Linear equations in (30) and (31) can be rewritten to

$$\mathbf{Dt} = \mathbf{0}, \qquad \mathbf{t} = \begin{bmatrix} \mathbf{t}_1^\top, \mathbf{t}_2^\top, \dots, \mathbf{t}_k^\top, s_{12}, \dots, s_{ij}, \dots \end{bmatrix}^\top$$

assuming measurement errors $\mathbf{Dt} = \boldsymbol{\epsilon}$ and d = 3, we have

$$\mathbf{t} \in \mathbb{R}^{3k+p}, \quad \mathbf{D} \in \mathbb{R}^{3p,3k+p}$$
 sparse

and

$$\mathbf{t}^* = \operatorname*{arg\,min}_{\mathbf{t},\,s_{ij}>0} \mathbf{t}^\top \mathbf{D}^\top \mathbf{D} \mathbf{t}$$

- this is a quadratic programming problem (mind the constraints!)
 - z = zeros(3*k+p,1); t = quadprog(D.'*D, z, diag([zeros(3*k,1); -ones(p,1)]), z);
- but check the rank first!

► Bundle Adjustment

Goal: Use a good (and expensive) error model and improve the initial estimates of all parameters

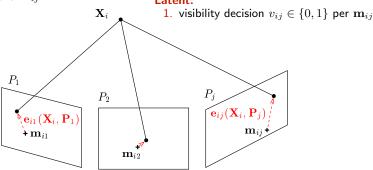
Given:

- **1**. set of 3D points $\{\mathbf{X}_i\}_{i=1}^p$
- 2. set of cameras $\{\mathbf{P}_i\}_{i=1}^{c}$
- 3. fixed tentative projections m_{ij}

Required: 1. corrected 3D points $\{\mathbf{X}'_i\}_{i=1}^p$

2. corrected cameras $\{\mathbf{P}'_i\}_{i=1}^c$

Latent:



- for simplicity, X, m are considered Cartesian (not homogeneous)
- we have projection error $\mathbf{e}_{ii}(\mathbf{X}_i, \mathbf{P}_i) = \mathbf{x}_i \mathbf{m}_i$ per image feature, where $\mathbf{x}_i = \mathbf{P}_i \mathbf{X}_i$
- for simplicity, we will work with scalar error $e_{ij} = ||\mathbf{e}_{ij}||$

Robust Objective Function for Bundle Adjustment

The data model is

constructed by marginalization over v_{ij} , as in the Robust Matching Model ightarrow116

$$p(\{\mathbf{e}\} \mid \{\mathbf{P}, \mathbf{X}\}) = \prod_{\mathsf{pts}:i=1}^{p} \prod_{\mathsf{cams}:j=1}^{c} \left((1 - P_0) p_1(e_{ij} \mid \mathbf{X}_i, \mathbf{P}_j) + P_0 p_0(e_{ij} \mid \mathbf{X}_i, \mathbf{P}_j) \right)$$

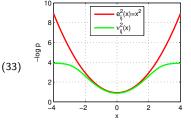
marginalized negative log-density is $(\rightarrow 117)$

$$-\log p(\{\mathbf{e}\} \mid \{\mathbf{P}, \mathbf{X}\}) = \sum_{i} \sum_{j} \underbrace{-\log\left(e^{-\frac{e_{ij}(\mathbf{X}_i, \mathbf{P}_j)}{2\sigma_1^2}} + t\right)}_{\rho(e_{ij}^2(\mathbf{X}_i, \mathbf{P}_j)) = \nu_{ij}^2(\mathbf{X}_i, \mathbf{P}_j)} \stackrel{\text{def}}{=} \sum_{i} \sum_{j} \nu_{ij}^2(\mathbf{X}_i, \mathbf{P}_j)$$

• we can use LM, e_{ij} is the exact projection error function (not Sampson error)

- u_{ij} is a 'robust' error fcn.; it is non-robust $(
 u_{ij} = e_{ij})$ when t = 0
- $\rho(\cdot)$ is a 'robustification function' often found in M-estimation

• the \mathbf{L}_{ij} in Levenberg-Marquardt changes to vector $(\mathbf{L}_{ij})_l = \frac{\partial \nu_{ij}}{\partial \theta_l} = \underbrace{\frac{1}{1 + t \, e^{e_{ij}^2(\theta)/(2\sigma_1^2)}}}_{\text{small for } e_{ij} \gg \sigma_1} \cdot \frac{1}{\nu_{ij}(\theta)} \cdot \frac{1}{4\sigma_1^2} \cdot \frac{\partial e_{ij}^2(\theta)}{\partial \theta_l}$



 $\sigma = 1.t = 0.02$

but the LM method stays the same as before \rightarrow 108–109

• outliers (wrong v_{ij}): almost no impact on \mathbf{d}_s in normal equations because the red term in (33) scales contributions to both sums down for the particular ij

$$-\sum_{i,j} \mathbf{L}_{ij}^{\top} \, \nu_{ij}(\theta^s) = \Big(\sum_{i,j}^k \mathbf{L}_{ij}^{\top} \mathbf{L}_{ij}\Big) \mathbf{d}_s$$

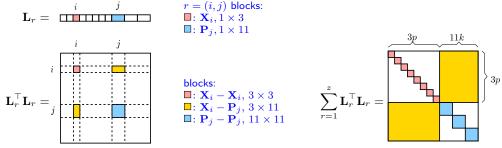
Sparsity in Bundle Adjustment

We have q = 3p + 11k parameters: $\theta = (\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_p; \mathbf{P}_1, \mathbf{P}_2, \dots, \mathbf{P}_k)$ points, cameras

We will use a multi-index r = 1, ..., z, $z = p \cdot k$. Then $\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \sum_{r=1}^{z} \nu_r^2(\boldsymbol{\theta}), \qquad \boldsymbol{\theta}^{s+1} \coloneqq \boldsymbol{\theta}^s + \mathbf{d}_s, \qquad -\sum_{r=1}^{z} \mathbf{L}_r^\top \nu_r(\boldsymbol{\theta}^s) = \left(\sum_{r=1}^{z} \mathbf{L}_r^\top \mathbf{L}_r + \lambda \operatorname{diag}(\mathbf{L}_r^\top \mathbf{L}_r)\right) \mathbf{d}_s$

The block-form of \mathbf{L}_r in Levenberg-Marquardt (ightarrow108) is zero except in columns i and j:

r-th error term is $u_r^2 =
ho(e_{ij}^2(\mathbf{X}_i,\mathbf{P}_j))$



• "points-first-then-cameras" parameterization scheme

► Choleski Decomposition for B. A.

The most expensive computation in B. A. is solving the normal eqs:

find **x** such that
$$\mathbf{b} \stackrel{\text{def}}{=} -\sum_{r=1}^{z} \mathbf{L}_{r}^{\top} \nu_{r}(\theta^{s}) = \left(\sum_{r=1}^{z} \mathbf{L}_{r}^{\top} \mathbf{L}_{r} + \lambda \operatorname{diag}(\mathbf{L}_{r}^{\top} \mathbf{L}_{r})\right) \mathbf{x} \stackrel{\text{def}}{=} \mathbf{A} \mathbf{x}$$

A is very large

approx. $3\cdot 10^4 imes 3\cdot 10^4$ for a small problem of 10000 points and 5 cameras

• ${f A}$ is sparse and symmetric, ${f A}^{-1}$ is dense

direct matrix inversion is prohibitive

Choleski: symmetric positive definite matrix A can be decomposed to $\mathbf{A} = \mathbf{L}\mathbf{L}^{\top}$, where L is lower triangular. If A is sparse then L is sparse, too.

1. decompose $\mathbf{A} = \mathbf{L}\mathbf{L}^{\top}$

L = chol(A); transforms the problem to $L \underbrace{L^{\top} \mathbf{x}}_{\mathbf{x}} = \mathbf{b}$

2. solve for \mathbf{x} in two passes:

$$\begin{array}{ll} \mathbf{L} \, \mathbf{c} = \mathbf{b} & \mathbf{c}_i \coloneqq \mathbf{L}_{ii}^{-1} \left(\mathbf{b}_i - \sum_{j < i} \mathbf{L}_{ij} \mathbf{c}_j \right) & \text{forward substitution, } i = 1, \dots, q \text{ (params)} \\ \\ \mathbf{L}^\top \, \mathbf{x} = \mathbf{c} & \mathbf{x}_i \coloneqq \mathbf{L}_{ii}^{-1} \left(\mathbf{c}_i - \sum_{j > i} \mathbf{L}_{ji} \mathbf{x}_j \right) & \text{back-substitution} \end{array}$$

• Choleski decomposition is fast (does not touch zero blocks)

non-zero elements are $9p + 121k + 66pk \approx 3.4 \cdot 10^6$; ca. $250 \times$ fewer than all elements

- it can be computed on single elements or on entire blocks
- use profile Choleski for sparse ${f A}$ and diagonal pivoting for semi-definite ${f A}$
- λ controls the definiteness

see above; [Triggs et al. 1999]

Profile Choleski Decomposition is Simple

```
function L = pchol(A)
%
% PCHOL profile Choleski factorization,
%
    L = PCHOL(A) returns lower-triangular sparse L such that A = L*L'
%
    for sparse square symmetric positive definite matrix A,
%
     especially efficient for arrowhead sparse matrices.
% (c) 2010 Radim Sara (sara@cmp.felk.cvut.cz)
 [p,q] = size(A);
if p ~= q, error 'Matrix A is not square'; end
L = sparse(q,q);
F = ones(q,1);
for i=1:a
 F(i) = find(A(i,:),1); % 1st non-zero on row i; we are building F gradually
 for i = F(i):i-1
  k = \max(F(i), F(j));
  a = A(i,j) - L(i,k:(j-1))*L(j,k:(j-1))';
  L(i,i) = a/L(i,i);
 end
 a = A(i,i) - sum(full(L(i,F(i):(i-1))).^2);
 if a < 0, error 'Matrix A is not positive definite'; end
 L(i,i) = sort(a):
 end
end
```

► Gauge Freedom (kalibrační invariance)

1. The external frame is not fixed:

$$\begin{array}{c} \text{See Projective Reconstruction Theorem} \rightarrow 132\\ \underline{\mathbf{m}}_{ij} \simeq \mathbf{P}_j \underline{\mathbf{X}}_i = \mathbf{P}_j \mathbf{H}^{-1} \mathbf{H} \underline{\mathbf{X}}_i = \mathbf{P}_j' \underline{\mathbf{X}}_i' \end{array}$$

- 2. Some representations are not minimal, e.g.
- P is 12 numbers for 11 parameters
- ${\ensuremath{\bullet}}$ we may represent ${\ensuremath{\mathbf{P}}}$ in decomposed form K, R, t
- but ${f R}$ is 9 numbers representing the 3 parameters of rotation

As a result

- there is no unique solution
- matrix $\sum_{r} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}$ is singular

Solutions

- 1. fixing the external frame (e.g. a selected camera frame) explicitly or by constraints
- 2. fixing the scale (e.g. $s_{12} = 1$)
- 3a. either imposing constraints on projective entities

• cameras, e.g.
$$\mathbf{P}_{3,4}=1$$

• points, e.g.
$$\left(\underline{\mathbf{X}}_{i}
ight)_{4}^{} = 1$$
 or $\| \underline{\mathbf{X}}_{i} \|^{2} = 1$

- 3b. or using minimal representations
 - points in their Euclidean representation \mathbf{X}_i
 - rotation matrices can be represented by skew-symmetric matrices \rightarrow 149

this excludes affine cameras the 2nd: can represent points at infinity Thank You