## Non-Bayesian Methods

lecturer: Jiří Matas, matas@cmp.felk.cvut.cz<br>authors: Ondřej Drbohlav, Jiří Matas, Václav Hlaváč

Czech Technical University, Faculty of Electrical Engineering
Department of Cybernetics, Center for Machine Perception
12135 Praha 2, Karlovo nám. 13, Czech Republic
http://cmp.felk.cvut.cz
September 2021, Ver. 1.3

## Lecture Outline

1. Limitations of Bayesian Decision Theory
2. Neyman Pearson Task
3. Minimax Task
4. Wald Task

## Bayesian Decision Theory

Recall:
$X$ set of observations
$K$ set of hidden states
$D$ set of decisions
$p_{X K}: \quad X \times K \rightarrow \mathbb{R}$ : joint probability
$W: K \times D \rightarrow \mathbb{R}$ : loss function,
$q: \quad X \rightarrow D$ : strategy
$R(q)$ : risk:

$$
\begin{equation*}
R(q)=\sum_{x \in X} \sum_{k \in K} p_{X K}(x, k) W(k, q(x)) \tag{1}
\end{equation*}
$$

Bayesian strategy $q^{*}$ :

$$
\begin{equation*}
q^{*}=\underset{q \in X \rightarrow D}{\operatorname{argmin}} R(q) \tag{2}
\end{equation*}
$$

## Limitations of the Bayesian Decision Theory

The limitations follow from the very ingredients of the Bayesian Decision Theory — the necessity to know all the probabilities and the loss function.

- The loss function $W$ must make sense, but in many tasks it wouldn't
- medical diagnosis task ( $W$ : price of medicines, staff labor, etc. but what penalty in case of patient's death?) Uncomparable penalties on different axes of $X$.
- nuclear plant
- judicial error
- The prior probabilities $p_{K}(k)$ : must exist and be known. But in some cases it does not make sense to talk about probabilities because the events are not random.
- $K=\{1,2\} \equiv$ \{own army plane, enemy plane $\}$;
$p(x \mid 1), p(x \mid 2)$ do exist and can be estimated, but $p(1)$ and $p(2)$ don't.
- The conditionals may be subject to non-random intervention; $p(x \mid k, z)$ where $z \in Z=\{1,2,3\}$ are different interventions.
- a system for handwriting recognition: The training set has been prepared by 3 different persons. But the test set has been constructed by one of the 3 persons only. This cannot be done:

$$
\begin{equation*}
\text { (!) } p(x \mid k)=\sum_{z} p(z) p(x \mid k, z) \tag{3}
\end{equation*}
$$

## Neyman Pearson Task

- $K=\{\mathrm{D}, \mathrm{N}\}$ (dangerous state, normal state)
- $X$ set of observations
- Conditionals $p(x \mid \mathrm{D}), p(x \mid \mathrm{N})$ are given
- The priors $p(\mathrm{D})$ and $p(\mathrm{~N})$ are unknown or do not exist
- $q: X \rightarrow K$ strategy

The Neyman Person Task looks for the optimal strategy $q^{*}$ for which
i) the error of classification of the dangerous state is lower than a predefined threshold $\bar{\epsilon}_{D}$ $\left(0<\bar{\epsilon}_{\mathrm{D}}<1\right)$, while
ii) the classification error for the normal state is as low as possible.

This is formulated as an optimization task with an inequality constraint:

$$
\begin{array}{r}
q^{*}=\underset{q: X \rightarrow K}{\operatorname{argmin}} \sum_{x: q(x) \neq \mathrm{N}} p(x \mid \mathrm{N}) \\
\text { subject to: } \sum_{x: q(x) \neq \mathrm{D}} p(x \mid \mathrm{D}) \leq \bar{\epsilon}_{\mathrm{D}} . \tag{5}
\end{array}
$$

## Neyman Pearson Task

(copied from the previous slide:)

$$
\begin{align*}
& \qquad q^{*}=\underset{q: X \rightarrow K}{\operatorname{argmin}} \sum_{x: q(x) \neq \mathrm{N}} p(x \mid \mathrm{N})  \tag{4}\\
& \text { subject to: } \sum_{x: q(x) \neq \mathrm{D}} p(x \mid \mathrm{D}) \leq \bar{\epsilon}_{\mathrm{D}} \tag{5}
\end{align*}
$$

A strategy is characterized by the classification error values $\epsilon_{\mathrm{N}}$ and $\epsilon_{\mathrm{D}}$ :

$$
\begin{align*}
& \epsilon_{\mathrm{N}}=\sum_{x: q(x) \neq \mathrm{N}} p(x \mid \mathrm{N}) \quad \text { (false alarm) }  \tag{6}\\
& \epsilon_{\mathrm{D}}=\sum_{x: q(x) \neq \mathrm{D}} p(x \mid \mathrm{D}) \quad \text { (overlooked danger) } \tag{7}
\end{align*}
$$

## Example: Male/Female Recognition (Neyman Pearson) (1)

An aging student at CTU wants to marry. He can't afford to miss recognizing a girl when he meets her, therefore he sets the threshold on female classification error to $\bar{\epsilon}_{\mathrm{D}}=0.2$. At the same time, he wants to minimize mis-classifying boys for girls.

- $K=\{\mathrm{D}, \mathrm{N}\} \equiv\{\mathrm{F}, \mathrm{M}\}$ (female, male)
- measurements $X=\{$ short, normal, tall $\} \times\{$ ultralight, light, avg, heavy $\}$
- Prior probabilities do not exist.
- Conditionals are given as follows:

| $p(x \mid$ F $)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| short | . 197 | . 145 | . 094 | . 017 |
| normal | . 077 | . 299 | . 145 | . 017 |
| tall | . 001 | . 008 | . 000 | . 000 |
|  | $\frac{\stackrel{+}{2}}{\frac{.1}{=1}}$ | $\stackrel{\stackrel{4}{\square}}{\stackrel{\rightharpoonup}{6}}$ | $\stackrel{60}{0}$ | さ |


| $p(x \mid \mathrm{M})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| short | . 011 | . 005 | . 011 | . 011 |
| normal | . 005 | . 071 | . 408 | . 038 |
| tall | . 002 | . 014 | . 255 | . 169 |
|  | $\xrightarrow{\stackrel{+}{4}}$ | $\xrightarrow{\stackrel{+}{50}}$ | $\underset{\sim}{60}$ | $\underset{\substack{\gtrless \\ \multirow{2}{*}{\hline}\\ \hline}}{ }$ |

## Neyman Pearson : Solution

The optimal strategy $q^{*}$ for a given $x \in X$ is constructed using the likelihood ratio $\frac{p(x \mid \mathrm{N})}{p(x \mid \mathrm{D})}$.
Let there be a constant $\mu \geq 0$. Given this $\mu$, a strategy $q$ is constructed as follows:

$$
\begin{align*}
& \frac{p(x \mid \mathrm{N})}{p(x \mid \mathrm{D})}>\mu \quad \Rightarrow \quad q(x)=\mathrm{N}  \tag{9}\\
& \frac{p(x \mid \mathrm{N})}{p(x \mid \mathrm{D})} \leq \mu \quad \Rightarrow \quad q(x)=\mathrm{D} \tag{10}
\end{align*}
$$

The optimal strategy $q^{*}$ is obtained by selecting the minimal $\mu$ for which there still holds that $\epsilon_{\mathrm{D}} \leq \bar{\epsilon}_{\mathrm{D}}$.

Let us show this on an example.

## Example: Male/Female Recognition (Neyman Pearson) (2)

| $p(x \mid$ F $)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| short | . 197 | . 145 | . 094 | . 017 |
| normal | . 077 | . 299 | . 145 | . 017 |
| tall | . 001 | . 008 | . 000 | . 000 |
|  | $\stackrel{\stackrel{4}{4}}{\stackrel{\rightharpoonup}{60}}$ |  | $\stackrel{\infty}{0}$ | $\underset{\substack{\gtrless \\ \multirow{2}{*}{\hline}\\ \hline}}{ }$ |


| $r(x)=p(x \mid \mathrm{M}) / p(x \mid \mathbf{F})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| short | 0.056 | 0.034 | 0.117 | 0.647 |
| normal | 0.065 | 0.237 | 2.814 | 2.235 |
| tall | 2.000 | 1.750 | $\infty$ | $\infty$ |
|  | $\xrightarrow{\frac{+}{6}}$ | $\xrightarrow{\stackrel{\rightharpoonup}{6}}$ | $\stackrel{\square 0}{\sim}$ | ¢ |


| rank order of $p(x \mid \mathrm{M}) / p(x \mid \mathrm{F})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| short | 2 | 1 | 4 | 6 |
| normal | 3 | 5 | 10 | 9 |
| tall | 8 | 7 | 11 | 12 |
|  | $\frac{\stackrel{+}{7}}{\substack{\text { b }}}$ | $\stackrel{ \pm}{\square}$ | $\stackrel{\substack{0}}{\substack{0}}$ | ¢ |

Here, different $\mu$ 's can produce 11 different strategies.
First, let us take $2.814<\mu<\infty$, e.g. $\mu=3$. This produces a strategy $q^{*}(x)=\mathrm{F}$ everywhere except where $p(x \mid \mathrm{F})=0$. Obviously, classification error $\epsilon_{\mathrm{F}}$ for F is $\epsilon_{\mathrm{F}}=0$, and $\epsilon_{\mathrm{M}}=1-.255-.169=.576$.

## Example：Male／Female Recognition（Neyman Pearson）（3）

| $p(x \mid \mathrm{F})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| short | ． 197 | ． 145 | ． 094 | ． 017 |
| normal | ． 077 | ． 299 | ． 145 | ． 017 |
| tall | ． 001 | ． 008 | ． 000 | ． 000 |
|  | 萨 | $\xrightarrow{+}$ | $\stackrel{60}{\sim}$ | さ |


| $p(x \mid \mathrm{M})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| short | ． 011 | ． 005 | ． 011 | ． 011 |
| normal | ． 005 | ． 071 | ． 408 | ． 038 |
| tall | ． 002 | ． 014 | ． 255 | ． 169 |
|  | 萨 | $\xrightarrow{+}$ | $\underset{\sim}{00}$ | さ |


| $r(x)=p(x \mid \mathrm{M}) / p(x \mid \mathrm{F})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| short | 0.056 | 0.034 | 0.117 | 0.647 |
| normal | 0.065 | 0.237 | 2.814 | 2.235 |
| tall | 2.000 | 1.750 | $\infty$ | $\infty$ |
|  |  | $\stackrel{\stackrel{7}{6}}{\underline{\circ}}$ | $\stackrel{6}{0}$ | $\xrightarrow{\text { ¢ }}$ |

rank，and $q^{*}(x)=\{\mathrm{F}, \mathrm{M}\}$ for $\mu=2.5$

| short | 2 | 1 | 4 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| normal | 3 | 5 | 10 | 9 |
| tall | 8 | 7 | 11 | 12 |
|  |  | $\xrightarrow{\stackrel{4}{\square}}$ | $\stackrel{\text { bo }}{\substack{0}}$ | さ |

Next，take $\mu$ which satisfies

$$
\begin{equation*}
r_{9}<\mu<r_{10} \quad(\text { e.g. } \mu=2.5) \tag{11}
\end{equation*}
$$

（where $r_{i}$ is the likelihood ratios indexed by its rank．）
Here，$\epsilon_{\mathrm{F}}=.145$ ，and $\epsilon_{\mathrm{M}}=1-.255-.169-.408=.168$ ．

## Example: Male/Female Recognition (Neyman Pearson) (4)

| $p(x \mid$ F $)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| short | . 197 | . 145 | . 094 | . 017 |
| normal | . 077 | . 299 | . 145 | . 017 |
| tall | . 001 | . 008 | . 000 | . 000 |
|  | $\stackrel{\stackrel{4}{4}}{\stackrel{\rightharpoonup}{60}}$ |  | $\stackrel{\infty}{0}$ | $\underset{\substack{\gtrless \\ \multirow{2}{*}{\hline}\\ \hline}}{ }$ |


| $r(x)=p(x \mid \mathrm{M}) / p(x \mid \mathbf{F})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| short | 0.056 | 0.034 | 0.117 | 0.647 |
| normal | 0.065 | 0.237 | 2.814 | 2.235 |
| tall | 2.000 | 1.750 | $\infty$ | $\infty$ |
|  | $\xrightarrow{\frac{+}{\square}}$ | $\xrightarrow{+0}$ | $\stackrel{60}{0}$ | - |

rank, and $q^{*}(x)=\{\mathrm{F}, \mathrm{M}\}$ for $\mu=2.1$

| short | 2 | 1 | 4 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| normal | 3 | 5 | 10 | 9 |
| tall | 8 | 7 | 11 | 12 |
|  |  | $\stackrel{\stackrel{4}{5}}{\stackrel{3}{\text { b0 }}}$ | $\stackrel{\infty}{0}$ | ® ¢ ¢ |

Do the same for $\mu$ satisfying

$$
\begin{equation*}
r_{8}<\mu<r_{9} \quad(\text { e.g. } \mu=2.1) \tag{12}
\end{equation*}
$$

$\Rightarrow \epsilon_{\mathrm{F}}=.162$, and $\epsilon_{\mathrm{M}}=0.13$.

Classification errors for F and M , for $\mu_{i}=\frac{r_{i}+r_{i+1}}{2}$ and $\mu_{0}=0$.


The optimum is reached for $r_{5}<\mu<r_{6} ; \epsilon_{\mathrm{F}}=.188, \epsilon_{\mathrm{M}}=.103$

## Neyman Pearson : Simple Case (1)



Consider a simple case when $p\left(x_{i} \mid \mathrm{D}\right)=$ const. Possible values for $\epsilon_{\mathrm{D}}$ are $0, \frac{1}{8}, \frac{2}{8}, \ldots, 1$. If a strategy $q$ classifies $P$ observations as normal then $\epsilon_{\mathrm{D}}=\frac{P}{8}$.
If $P=1$ then $\epsilon_{\mathrm{D}}=\frac{1}{8}$ and it is clear that $\epsilon_{\mathrm{N}}$ will attain minimum if the (one) observation which is classified as normal is the one with the highest $p\left(x_{i} \mid \mathrm{N}\right)$. Similarly, if $P=2$ then the two observations to be classified as normal are the one with the first two highest $p\left(x_{i} \mid \mathrm{N}\right)$. Etc.

$\uparrow$ cumulative sum of sorted $p\left(x_{i} \mid \mathbf{N}\right)$ shows the classification success rate for N , that is, $1-\epsilon_{N}$, for $\epsilon_{D}=\frac{1}{8}, \frac{2}{8}, \ldots, 1$. For example, for $\epsilon_{\mathrm{D}}=\frac{2}{8}(P=2), \epsilon_{\mathrm{N}}=1-0.45=0.55$ (as shown, dashed.)

## Neyman Pearson : Towards General Case (2)

In general, $p\left(x_{i} \mid \mathrm{D}\right) \neq$ const. Consider the following example:

| $p\left(x_{i} \mid \mathrm{D}\right)$ |  |  |
| :---: | :---: | :---: |
| $x_{1}$ | $x_{2}$ | $x_{3}$ |
| 0.5 | 0.25 | 0.25 |


| $p\left(x_{i} \mid \mathrm{N}\right)$ |  |  |
| :---: | :---: | :---: |
| $x_{1}$ | $x_{2}$ | $x_{3}$ |
| 0.6 | 0.35 | 0.05 |

But this can easily be converted to the previous special case by (only formally) splitting $x_{1}$ to two observations $x_{1}^{\prime}$ and $x_{1}^{\prime \prime}$ :

| $x_{1}^{\prime}$ | $x_{1}^{\prime \prime}$ | $\left.x_{2} \mid \mathrm{D}\right)$ |  |
| :--- | :---: | :---: | :---: |
| 0.25 | 0.25 | 0.25 | $x_{3}$ |


| $p\left(x_{i} \mid \mathrm{N}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $x_{1}^{\prime}$ | $x_{1}^{\prime \prime}$ | $x_{2}$ | $x_{3}$ |
| 0.3 | 0.3 | 0.35 | 0.05 |

which would result in ordering the observations by decreasing $p\left(x_{i} \mid \mathrm{N}\right)$ as: $x_{2}, x_{1}, x_{3}$.
Obviously, the same ordering is obtained when $p\left(x_{i} \mid \mathbf{N}\right)$ is 'normalized' by $p\left(x_{i} \mid \mathbf{D}\right)$, that is, using the likelihood ratio

$$
\begin{equation*}
r\left(x_{i}\right)=\frac{p\left(x_{i} \mid \mathrm{N}\right)}{p\left(x_{i} \mid \mathrm{D}\right)} . \tag{13}
\end{equation*}
$$

Neyman Pearson : General Case Example (3)









## Neyman Pearson Solution : Illustration of Principle

Lagrangian of the Neyman Pearson Task is

$$
\begin{align*}
L(q) & =\underbrace{\sum_{x: q(x)=\mathrm{D}} p(x \mid \mathrm{N})}_{=}+\mu\left(\sum_{x: q(x)=\mathrm{N}} p(x \mid \mathrm{D})-\bar{\epsilon}_{D}\right)  \tag{14}\\
& =\overbrace{1-\sum_{x: q(x)=\mathrm{N}} p(x \mid \mathrm{N})}+\mu\left(\sum_{x: q(x)=\mathrm{N}} p(x \mid \mathrm{D})\right)-\mu \bar{\epsilon}_{\mathrm{D}} \\
& =1-\mu \bar{\epsilon}_{\mathrm{D}}+\sum_{x: q(x)=\mathrm{N}} \underbrace{\{\mu p(x \mid \mathrm{D})-p(x \mid \mathrm{N})\}}_{T(x)}
\end{align*}
$$

If $T(x)$ is negative for an $x$ then it will decrease the objective function and the optimal strategy $q^{*}$ will decide $q^{*}(x)=\mathrm{N}$. This illustrates why the solution to the Neyman Pearson Task has the form

$$
\begin{align*}
& \frac{p(x \mid \mathrm{N})}{p(x \mid \mathrm{D})}>\mu \quad \Rightarrow \quad q(x)=\mathrm{N}  \tag{9}\\
& \frac{p(x \mid \mathrm{N})}{p(x \mid \mathrm{D})} \leq \mu \quad \Rightarrow \quad q(x)=\mathrm{D} \tag{10}
\end{align*}
$$

## Neyman Pearson : Derivation (1)

$$
\begin{equation*}
q^{*}=\min _{q: X \rightarrow K} \sum_{x: q(x) \neq \mathrm{N}} p(x \mid \mathrm{N}) \quad \text { subject to: } \sum_{x: q(x) \neq \mathrm{D}} p(x \mid \mathrm{D}) \leq \bar{\epsilon}_{\mathrm{D}} \tag{17}
\end{equation*}
$$

Let us rewrite this as

$$
\begin{array}{rll}
q^{*}=\min _{q: X \rightarrow K} \sum_{x \in X} \alpha(x) p(x \mid \mathbf{N}) \quad \text { subject to: } & \sum_{x \in X}[1-\alpha(x)] p(x \mid \mathrm{D}) \leq \bar{\epsilon}_{\mathrm{D}} . \\
\text { and: } & \alpha(x) \in\{0,1\} \forall x \in X \tag{19}
\end{array}
$$

This is a combinatorial optimization problem. If the relaxation is done from $\alpha(x) \in\{0,1\}$ to $0 \leq \alpha(x) \leq 1$, this can be solved by linear programming (LP). The Lagrangian of this problem with inequality constraints is:

$$
\begin{array}{r}
L\left(\alpha\left(x_{1}\right), \alpha\left(x_{2}\right), \ldots, \alpha\left(x_{N}\right)\right)=\sum_{x \in X} \alpha(x) p(x \mid \mathrm{N})+\mu\left(\sum_{x \in X}[1-\alpha(x)] p(x \mid \mathrm{D})-\bar{\epsilon}_{\mathrm{D}}\right) \\
-\sum_{x \in X} \mu_{0}(x) \alpha(x)+\sum_{x \in X} \mu_{1}(x)(\alpha(x)-1) \tag{21}
\end{array}
$$

## Neyman Pearson : Derivation (2)

$$
\begin{align*}
L\left(\alpha\left(x_{1}\right), \alpha\left(x_{2}\right), \ldots, \alpha\left(x_{N}\right)\right)= & \sum_{x \in X} \alpha(x) p(x \mid \mathrm{N})+\mu\left(\sum_{x \in X}[1-\alpha(x)] p(x \mid \mathrm{D})-\bar{\epsilon}_{\mathrm{D}}\right)  \tag{20}\\
& -\sum_{x \in X} \mu_{0}(x) \alpha(x)+\sum_{x \in X} \mu_{1}(x)(\alpha(x)-1) \tag{21}
\end{align*}
$$

The conditions for optimality are $(\forall x \in X)$ :

$$
\begin{array}{r}
\frac{\partial L}{\partial \alpha(x)}=p(x \mid \mathbf{N})-\mu p(x \mid \mathbf{D})-\mu_{0}(x)+\mu_{1}(x)=0 \\
\mu \geq 0, \mu_{0}(x) \geq 0, \mu_{1}(x) \geq 0, \quad 0 \leq \alpha(x) \leq 1 \\
\mu_{0}(x) \alpha(x)=0, \mu_{1}(x)(\alpha(x)-1)=0, \mu\left(\sum_{x \in X}[1-\alpha(x)] p(x \mid \mathbf{D})-\bar{\epsilon}_{\mathrm{D}}\right)=0 \tag{24}
\end{array}
$$

## Case-by-case analysis:

| case | implications |
| :--- | :--- |
| $\mu=0$ | $L$ minimized by $\alpha(x)=0 \quad \forall x$ |
| $\mu \neq 0, \alpha(x)=0$ | $\mu_{1}(x)=0 \Rightarrow \mu_{0}(x)=p(x \mid \mathrm{N})-\mu p(x \mid \mathrm{D}) \Rightarrow p(x \mid \mathrm{N}) / p(x \mid \mathrm{D}) \leq \mu$ |
| $\mu \neq 0, \alpha(x)=1$ | $\mu_{0}(x)=0 \Rightarrow \mu_{1}(x)=-[p(x \mid \mathrm{N})-\mu p(x \mid \mathrm{D})] \Rightarrow p(x \mid \mathrm{N}) / p(x \mid \mathrm{D}) \geq \mu$ |
| $\mu \neq 0$, <br> $0<\alpha(x)<1$ | $\mu_{0}(x)=\mu_{1}(x)=0 \Rightarrow p(x \mid \mathrm{N}) / p(x \mid \mathrm{D})=\mu$ |

## Neyman Pearson : Derivation (3)

Case-by-case analysis:

| case | implications |
| :--- | :--- |
| $\mu=0$ | $L$ minimized by $\alpha(x)=0 \quad \forall x$ |
| $\mu \neq 0, \alpha(x)=0$ | $\mu_{1}(x)=0 \Rightarrow \mu_{0}(x)=p(x \mid \mathrm{N})-\mu p(x \mid \mathrm{D}) \Rightarrow p(x \mid \mathrm{N}) / p(x \mid \mathrm{D}) \leq \mu$ |
| $\mu \neq 0, \alpha(x)=1$ | $\mu_{0}(x)=0 \Rightarrow \mu_{1}(x)=-[p(x \mid \mathrm{N})-\mu p(x \mid \mathrm{D})] \Rightarrow p(x \mid \mathrm{N}) / p(x \mid \mathrm{D}) \geq \mu$ |
| $\mu \neq 0$, <br> $0<\alpha(x)<1$ | $\mu_{0}(x)=\mu_{1}(x)=0 \Rightarrow p(x \mid \mathrm{N}) / p(x \mid \mathrm{D})=\mu$ |

Optimal Strategy for a given $\mu \geq 0$ and particular $x \in X$ :
$\frac{p(x \mid \mathrm{N})}{p(x \mid \mathrm{D})} \begin{cases}<\mu & \Rightarrow q(x)=\mathrm{D}(\text { as } \alpha(x)=0) \\ >\mu & \Rightarrow q(x)=\mathrm{N}(\text { as } \alpha(x)=1) \\ =\mu & \Rightarrow \text { LP relaxation does not give the desired solution, as } \alpha \notin\{0,1\}\end{cases}$

## Neyman Pearson : Note on Randomized Strategies (1)

Consider:

| $p(x \mid \mathrm{D})$ |  |  |
| :---: | :---: | :---: |
| $x_{1}$ | $x_{2}$ | $x_{3}$ |
| 0.9 | 0.09 | 0.01 |


| $p(x \mid \mathrm{N})$ |  |  |
| :---: | :---: | :---: |
| $x_{1}$ | $x_{2}$ | $x_{3}$ |
| 0.09 | 0.9 | 0.01 |


| $r(x)=p(x \mid \mathrm{N}) / p(x \mid \mathrm{D})$ |  |  |
| :---: | :---: | :---: |
| $x_{1}$ | $x_{2}$ | $x_{3}$ |
| 0.1 | 10 | 1 |

and $\bar{\epsilon}_{\mathrm{D}}=0.03$.
$q_{1}:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow(\mathrm{D}, \mathrm{D}, \mathrm{D}) \quad \Rightarrow \quad \epsilon_{\mathrm{D}}=0.00, \epsilon_{\mathrm{N}}=1.00$
$q_{2}:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow(\mathrm{D}, \mathrm{D}, \mathrm{N}) \quad \Rightarrow \quad \epsilon_{\mathrm{D}}=0.01, \epsilon_{\mathrm{N}}=0.99$

- no other deterministic strategy $q$ is feasible, that is all other ones have $\epsilon_{\mathrm{D}}>\bar{\epsilon}_{\mathrm{D}}$
- $q_{2}$ is the best deterministic strategy but it does not comply with the previous basic result of constructing the optimal strategy because it decides for N for likelihood ratio 1 but decides for D for likelihood ratios 0.01 and 10 . Why is that?
- we can construct a randomized strategy which attains $\bar{\epsilon}_{\mathrm{D}}$ and reaches lower $\epsilon_{\mathrm{N}}$ :

$$
q\left(x_{1}\right)=q\left(x_{3}\right)=\mathrm{D}, \quad q\left(x_{2}\right)= \begin{cases}\mathrm{N} & 1 / 3 \text { of the time }  \tag{26}\\ \mathrm{D} & 2 / 3 \text { of the time }\end{cases}
$$

For such strategy, $\epsilon_{\mathrm{D}}=0.03, \epsilon_{\mathrm{N}}=0.7$.

## Neyman Pearson : Note on Randomized Strategies (2)

- This is not a problem but a feature which is caused by discrete nature of $X$ (does not happen when $X$ is continuous).
- This is exactly what the case of $\mu=p(x \mid \mathrm{N}) / p(x \mid \mathrm{D})$ is on slide 18 .


## Neyman Pearson : Notes (1)

- The task can be generalized to 3 hidden states, of which 2 are dangerous, $K=\left\{\mathrm{N}, \mathrm{D}_{1}, \mathrm{D}_{2}\right\}$. It is formulated as an analogous problem with two inequality constraints and minimization of classification error for N .
- Neyman's and Pearson's work dates to 1928 and 1933.
- A particular strength of the approach lies in that the likelihood ratio $r(x)$ or even $p(x \mid \mathrm{N})$ need not be known. For the task to be solved, it is enough to know the $p(x \mid \mathrm{D})$ and the rank order of the likelihood ratio (to be demonstrated on the next page)


## Neyman Pearson : Notes (2)

- Consider a medicine for reducing weight. The normal population has a distribution of weight $p(x \mid \mathbf{D})$ as shown in blue. Let it be normal, $p(x \mid \mathrm{D})=\mathcal{N}\left(x \mid \mu_{0}, \sigma\right)$. The distribution of weights after 1 month of taking the medicine is assumed to be normal as well, with the same variance but uknown shift of mean to the left, $p(x \mid \mathrm{N})=\mathcal{N}\left(x \mid \mu_{1}, \sigma\right)$, with $\mu_{1}<\mu_{0}$ but otherwise unknown (shown in red).
The likelihood ratio is
$r(x)=\exp \frac{1}{2 \sigma^{2}}\left(-\left(x-\mu_{1}\right)^{2}+\left(x-\mu_{0}\right)^{2}\right)=\exp \left(\frac{1}{\sigma^{2}}\left(\mu_{1}-\mu_{0}\right) x+\right.$ const $)$. It is thus decreasing (monotone) with $x$ (irrespective of $\mu_{1}, \mu_{1}<\mu_{0}$ ).
Setting $\bar{\epsilon}_{\mathrm{D}}=0.02$, we go along the decreasing $r(x)$ and find the point $x_{t h r}$ for which $\int_{-\infty}^{x_{t h r}} p(x \mid \mathrm{D})=\bar{\epsilon}_{\mathrm{D}}=0.02$ (0.02-quantile). Note that the threshold $\mu$ on $r(x)$ is still uknown as $p(x \mid \mathrm{N})$ is unknown.



## Minimax Task

- $K=\{1,2, . ., N\}$
- $X$ set of observations
- Conditionals $p(x \mid k)$ are known $\forall k \in K$
- The priors $p(k)$ are unknown or do not exist
- $q: X \rightarrow K$ strategy

The Minimax Task looks for the optimum strategy $q^{*}$ which minimizes the classification error of the worst classified class:

$$
\begin{align*}
q^{*} & =\underset{q: X \rightarrow K}{\operatorname{argmin}} \max _{k \in K} \epsilon(k), \quad \text { where }  \tag{27}\\
\epsilon(k) & =\sum_{x: q(x) \neq k} p(x \mid k) \tag{28}
\end{align*}
$$

- Example: A recognition algorithm qualifies for a competition using preliminary tests. During the final competition, only objects from the hardest-to-classify class are used.
- For a 2-class problem, the strategy is again constructed using the likelihood ratio.
- In the case of continuous observations space $X$, equality of classification errors is attained: $\epsilon_{1}=\epsilon_{2}$
- The derivation can again be done using Linear Programming.


## Example: Male/Female Recognition (Minimax)

Classification errors for F and M , for $\mu_{i}=\frac{r_{i}+r_{i+1}}{2}$ and $\mu_{0}=0$.


The optimum is attained for $i=8, \epsilon_{\mathrm{F}}=.162, \epsilon_{\mathrm{M}}=.13$. The corresponding strategy is as shown on slide 11.

## Minimax: Comparison with Bayesian Decision with Unknown Priors

- Consider the same setting as in the Minimax task, but let the priors $p(k)$ exist but be unknown.
- The Bayesian error $\epsilon$ for strategy $q$ is

$$
\begin{equation*}
\epsilon=\sum_{k} \sum_{x: q(x) \neq k} p(x, k)=\sum_{k} p(k) \underbrace{\sum_{x: q(x) \neq k} p(x \mid k)}_{\epsilon(k)} \tag{29}
\end{equation*}
$$

- We want to minimize $\epsilon$ but we do not know $p(k)$ 's. What is the maximum it can attain? Obviously, the $p(k)$ 's do the convex combination of the class errors $\epsilon(k)$; the maximum Bayesian error will be attained when $p(k)=1$ for the class $k$ with the highest class error $\epsilon(k)$.
- Thus, to minimize the Bayesian error $\epsilon$ under this setting, the solution is to minimize the error of the hardest-to-classify class.
- Therefore, Minimax formulation and the Bayesian formulation with Unknown Priors lead to the same solution.


## Wald Task (1)

- Let us consider classification with two states, $K=\{1,2\}$.
- We want to set a threshold $\epsilon$ on the classification error of both of the classes: $\epsilon_{1} \leq \epsilon$, $\epsilon_{2} \leq \epsilon$.
- It is clear that there may be no feasible solution if $\epsilon$ is set too low.
- That is why the possibility of decision "do not know" is introduced. Thus $D=K \cup\{?\}$
- A strategy $q: X \rightarrow D$ is characterized by:

$$
\begin{align*}
& \left.\epsilon_{1}=\sum_{x: q(x)=2} p(x \mid 1) \quad \text { (classification error for } 1\right)  \tag{30}\\
& \epsilon_{2}=\sum_{x: q(x)=1} p(x \mid 2) \quad \text { (classification error for 2) }  \tag{31}\\
& \left.\kappa_{1}=\sum_{x: q(x)=?} p(x \mid 1) \quad \text { (undecided rate for } 1\right)  \tag{32}\\
& \kappa_{2}=\sum_{x: q(x)=?} p(x \mid 2) \quad \text { (undecided rate for 2) } \tag{33}
\end{align*}
$$

## Wald Task (2)

- The optimal strategy $q^{*}$ :

$$
\begin{array}{r}
q^{*}=\underset{q: X \rightarrow D}{\operatorname{argmin}} \max _{i=\{1,2\}} \kappa_{i} \\
\text { subject to: } \epsilon_{1} \leq \epsilon, \epsilon_{2} \leq \epsilon \tag{35}
\end{array}
$$

- The task is again solvable using LP (even for more than 2 classes)
- The optimal solution is again based on the likelihood ratio

$$
\begin{equation*}
r(x)=\frac{p(x \mid 1)}{p(x \mid 2)} \tag{36}
\end{equation*}
$$

- The optimal strategy is constructed using suitably chosen thresholds $\mu_{l}$ and $\mu_{h}$ such that:

$$
q(x)= \begin{cases}2 & \text { for } r(x)<\mu_{l}  \tag{37}\\ 1 & \text { for } r(x)>\mu_{h} \\ ? & \text { for } \mu_{l} \leq r(x) \leq \mu_{h}\end{cases}
$$

## Example: Male/Female Recognition (Wald)

Solve the Wald task for $\epsilon=0.05$.

| $p(x \mid \mathbf{F})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| short | . 197 | . 145 | . 094 | . 017 |
| normal | . 077 | . 299 | . 145 | . 017 |
| tall | . 001 | . 008 | . 000 | . 000 |
|  | $\stackrel{\stackrel{+}{\square}}{\stackrel{.0}{10}}$ | $\stackrel{\stackrel{\rightharpoonup}{\square}}{\substack{\text { b0 }}}$ | $\underset{\sim}{60}$ | ત |


| $p(x \mid \mathrm{M})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| short | . 011 | . 005 | . 011 | . 011 |
| normal | . 005 | . 071 | . 408 | . 038 |
| tall | . 002 | . 014 | . 255 | . 169 |
|  |  | $\stackrel{\stackrel{\rightharpoonup}{6}}{\underline{00}}$ | $\stackrel{\text { ®00 }}{\substack{0}}$ |  |


| $r(x)=p(x \mid \mathrm{M}) / p(x \mid \mathbf{F})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| short | 0.056 | 0.034 | 0.117 | 0.647 |
| normal | 0.065 | 0.237 | 2.814 | 2.235 |
| tall | 2.000 | 1.750 | $\infty$ | $\infty$ |
|  | $\xrightarrow{\frac{1}{6}}$ |  | $\stackrel{60}{0}$ | $\underset{\substack{\text { ® } \\ \text { ® } \\ \text { ¢ } \\ \hline}}{ }$ |


| rank, and $q^{*}(x)=\{\mathrm{F}, \mathrm{M}, ?\}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| short | 2 | 1 | 4 | 6 |
| normal | 3 | 5 | 10 | 9 |
| tall | 8 | 7 | 11 | 12 |
|  | $\frac{\stackrel{+}{6}}{\frac{.0}{\underline{10}}}$ | $\stackrel{\stackrel{7}{\square}}{\substack{\text { ¢00 }}}$ | $\stackrel{\substack{0 \\ \sim}}{0}$ | ® <br> ® <br> ¢ |

Result: $\epsilon_{\mathrm{M}}=0.032, \epsilon_{\mathrm{F}}=0, \kappa_{\mathrm{M}}=0.544, \kappa_{\mathrm{F}}=0.487$
$\left(r_{4}<\mu_{l}<r_{5}, r_{10}<\mu_{h}<\infty\right)$

