Non-Bayesian Methods

lecturer: Jiří Matas, matas@cmp.felk.cvut.cz

authors: Ondřej Drbohlav, Jiří Matas, Václav Hlaváč

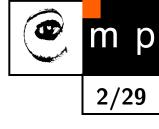
Czech Technical University, Faculty of Electrical Engineering Department of Cybernetics, Center for Machine Perception 121 35 Praha 2, Karlovo nám. 13, Czech Republic

http://cmp.felk.cvut.cz

September 2021, Ver. 1.3

Lecture Outline

- 1. Limitations of Bayesian Decision Theory
- 2. Neyman Pearson Task
- 3. Minimax Task
- 4. Wald Task



Bayesian Decision Theory

Recall:

- X set of observations
- K set of hidden states
- D set of decisions
- p_{XK} : $X \times K \rightarrow \mathbb{R}$: joint probability
- $W: K \times D \rightarrow \mathbb{R}:$ loss function,
- $q: X \to D: \text{ strategy}$

R(q): risk:

$$R(q) = \sum_{x \in X} \sum_{k \in K} p_{XK}(x,k) W(k,q(x))$$
(1)

Bayesian strategy q^* :

$$q^* = \operatorname*{argmin}_{q \in X \to D} R(q) \tag{2}$$

Limitations of the Bayesian Decision Theory

The limitations follow from the very ingredients of the Bayesian Decision Theory — the necessity to know all the probabilities and the loss function.

- The loss function W must make sense, but in many tasks it wouldn't
 - medical diagnosis task (W: price of medicines, staff labor, etc. but what penalty in case of patient's death?) Uncomparable penalties on different axes of X.
 - nuclear plant
 - judicial error
- The prior probabilities $p_K(k)$: must exist and be known. But in some cases it does not make sense to talk about probabilities because the events are not random.
 - $K = \{1, 2\} \equiv \{$ own army plane, enemy plane $\};$ p(x|1), p(x|2) do exist and can be estimated, but p(1) and p(2) don't.
- The conditionals may be subject to non-random intervention; p(x | k, z) where $z \in Z = \{1, 2, 3\}$ are different interventions.
 - a system for handwriting recognition: The training set has been prepared by 3 different persons. But the test set has been constructed by one of the 3 persons only. This **cannot** be done:

(!)
$$p(x \mid k) = \sum_{z} p(z)p(x \mid k, z)$$
 (3)

Neyman Pearson Task

- $K = \{D, N\}$ (dangerous state, normal state)
- X set of observations
- Conditionals $p(x \mid \mathsf{D})$, $p(x \mid \mathsf{N})$ are given
- The priors p(D) and p(N) are unknown or do not exist
- $q: X \to K$ strategy

The Neyman Person Task looks for the optimal strategy q^{\ast} for which

- i) the error of classification of the dangerous state is lower than a predefined threshold $\bar{\epsilon}_D$ ($0 < \bar{\epsilon}_D < 1$), while
- ii) the classification error for the normal state is as low as possible.

This is formulated as an optimization task with an inequality constraint:

$$q^* = \underset{q:X \to K}{\operatorname{argmin}} \sum_{x:q(x) \neq \mathsf{N}} p(x \mid \mathsf{N})$$
(4)
subject to:
$$\sum_{x:q(x) \neq \mathsf{D}} p(x \mid \mathsf{D}) \leq \bar{\epsilon}_{\mathsf{D}}.$$
(5)

5/29

Neyman Pearson Task

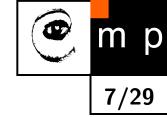
(copied from the previous slide:)

$$q^* = \underset{q:X \to K}{\operatorname{argmin}} \sum_{\substack{x:q(x) \neq \mathsf{N}}} p(x \mid \mathsf{N})$$
(4)
subject to:
$$\sum_{\substack{x:q(x) \neq \mathsf{D}}} p(x \mid \mathsf{D}) \leq \overline{\epsilon}_{\mathsf{D}}.$$
(5)

A strategy is characterized by the classification error values ϵ_N and ϵ_D :

$$\epsilon_{\mathsf{N}} = \sum_{x:q(x)\neq\mathsf{N}} p(x \mid \mathsf{N}) \quad \text{(false alarm)} \tag{6}$$
$$\epsilon_{\mathsf{D}} = \sum_{x:q(x)\neq\mathsf{D}} p(x \mid \mathsf{D}) \quad \text{(overlooked danger)} \tag{7}$$

Example: Male/Female Recognition (Neyman Pearson) (1)



An aging student at CTU wants to marry. He can't afford to miss recognizing a girl when he meets her, therefore he sets the threshold on female classification error to $\bar{\epsilon}_{\rm D} = 0.2$. At the same time, he wants to minimize mis-classifying boys for girls.

- $K = \{\mathsf{D},\mathsf{N}\} \equiv \{\mathsf{F},\mathsf{M}\}$ (female, male)
- measurements $X = \{$ short, normal, tall $\} imes \{$ ultralight, light, avg, heavy $\}$
- Prior probabilities do not exist.
- Conditionals are given as follows:

	p	$\mathbf{P}(x F)$				p	(x M)		
short	.197	.145	.094	.017	short	.011	.005	.011	.011
normal	.077	.299	.145	.017	normal	.005	.071	.408	.038
tall	.001	.008	.000	.000	tall	.002	.014	.255	.169
	u-light	light	avg	heavy		u-light	light	avg	heavy

Neyman Pearson : Solution

The optimal strategy q^* for a given $x \in X$ is constructed using the likelihood ratio $\frac{p(x \mid N)}{p(x \mid D)}$. Let there be a constant $\mu \ge 0$. Given this μ , a strategy q is constructed as follows:

$$\frac{p(x \mid \mathsf{N})}{p(x \mid \mathsf{D})} > \mu \quad \Rightarrow \quad q(x) = \mathsf{N} ,$$

$$\frac{p(x \mid \mathsf{N})}{p(x \mid \mathsf{D})} \le \mu \quad \Rightarrow \quad q(x) = \mathsf{D} .$$
(9)
(10)

8/29

The optimal strategy q^* is obtained by selecting the minimal μ for which there still holds that $\epsilon_D \leq \overline{\epsilon}_D$.

Let us show this on an example.

Example: Male/Female Recognition (Neyman Pearson) (2)



p(x F)						
short	.197	.145	.094	.017		
normal	.077	.299	.145	.017		
tall	.001	.008	.000	.000		
	u-light	light	avg	heavy		

 $p(x|\mathsf{M})$.011 short .011 .005 .011 .005 .071 .408 .038 normal .002 .014 .255 .169 tall u-light heavy light avg

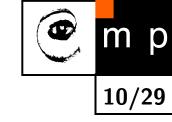
	r(x) = r(x)	p(x M)/2	p(x F)		rank or
short	0.056	0.034	0.117	0.647	short
normal	0.065	0.237	2.814	2.235	normal
tall	2.000	1.750	∞	∞	tall
	u-light	light	avg	heavy	

rank ord	er of	$p(x \mathbf{N})$	$\Lambda)/p($	x F)
short	2	1	4	6
normal	3	5	10	9
tall	8	7	11	12
	-light	ight	avg	eavy

Here, different μ 's can produce 11 different strategies.

First, let us take $2.814 < \mu < \infty$, e.g. $\mu = 3$. This produces a strategy $q^*(x) = \mathsf{F}$ everywhere except where $p(x|\mathsf{F}) = 0$. Obviously, classification error ϵ_{F} for F is $\epsilon_{\mathsf{F}} = 0$, and $\epsilon_{\mathsf{M}} = 1 - .255 - .169 = .576$.

Example: Male/Female Recognition (Neyman Pearson) (3)



	p	(x F)		
short	.197	.145	.094	.017
normal	.077	.299	.145	.017
tall	.001	.008	.000	.000
	u-light	light	avg	heavy

 $p(x|\mathsf{M})$.011 .011 .005 .011 short .038 .005 .071 .408 normal .002 .014 .255 .169 tall u-light heavy light avg

 $r(x) = p(x|\mathsf{M})/p(x|\mathsf{F})$ 0.056 0.034 short 0.117 0.647 0.237 0.065 2.814 2.235 normal tall 2.000 1.750 ∞ ∞ I-light heavy light avg

rank, and $q^*(x) = \{\mathsf{F}, \mathsf{M}\}$ for $\mu = 2.5$

,	1 (-)	U 7	j
short	2	1	4	6
normal	3	5	10	9
tall	8	7	11	12
	u-light	light	avg	heavy

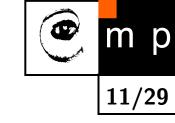
Next, take μ which satisfies

$$r_9 < \mu < r_{10}$$
 (e.g. $\mu = 2.5$) (11)

(where r_i is the likelihood ratios indexed by its rank.)

Here, $\epsilon_{\rm F} = .145$, and $\epsilon_{\rm M} = 1 - .255 - .169 - .408 = .168$.

Example: Male/Female Recognition (Neyman Pearson) (4)



(12)

	p	$\mathbf{P}(x F)$		
short	.197	.145	.094	.017
normal	.077	.299	.145	.017
tall	.001	.008	.000	.000
	u-light	light	avg	heavy

	p	(x M)		
short	.011	.005	.011	.011
normal	.005	.071	.408	.038
tall	.002	.014	.255	.169
	u-light	light	avg	heavy

	r(x) = p(x M)/p(x F)						
short	0.056	0.034	0.117	0.647			
normal	0.065	0.237	2.814	2.235			
tall	2.000	1.750	∞	∞			
	u-light	light	avg	heavy			

rank, and $q^*(x) = \{ {\rm F}, {\rm M} \}$ for $\mu = 2.1$

	u y (e	$\nu_{j} -$	ι,,,	1 101 $\mu = 2.1$
short	2	1	4	6
normal	3	5	10	9
tall	8	7	11	12
	u-light	light	avg	heavy

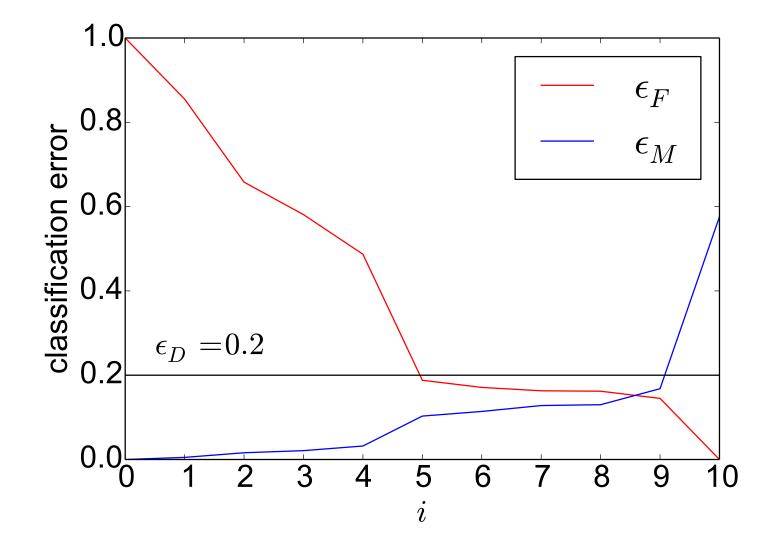
Do the same for $\boldsymbol{\mu}$ satisfying

$$r_8 < \mu < r_9$$
 (e.g. $\mu = 2.1$)

 $\Rightarrow \epsilon_{\rm F} = .162$, and $\epsilon_{\rm M} = 0.13$.

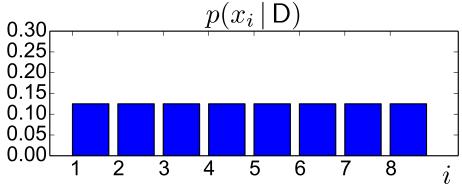
Example: Male/Female Recognition (Neyman Pearson) (5)

Classification errors for F and M, for $\mu_i = \frac{r_i + r_{i+1}}{2}$ and $\mu_0 = 0$.



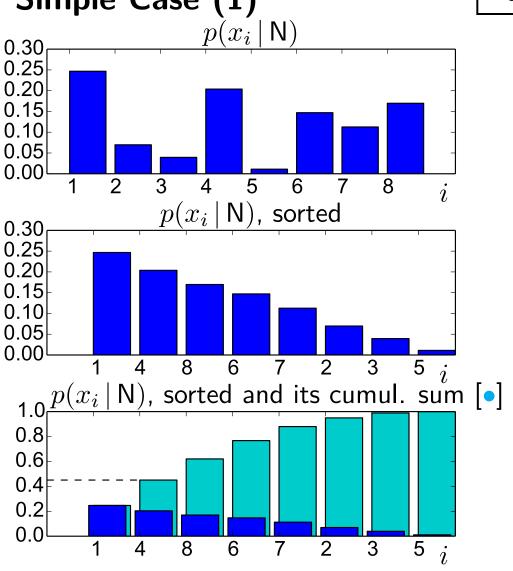
The optimum is reached for $r_5 < \mu < r_6$; $\epsilon_F = .188$, $\epsilon_M = .103$

Neyman Pearson : Simple Case (1)



Consider a simple case when $p(x_i | \mathsf{D}) = \text{const.}$ Possible values for ϵ_{D} are $0, \frac{1}{8}, \frac{2}{8}, ..., 1$. If a strategy qclassifies P observations as normal then $\epsilon_{\mathsf{D}} = \frac{P}{8}$.

If P = 1 then $\epsilon_{\rm D} = \frac{1}{8}$ and it is clear that $\epsilon_{\rm N}$ will attain minimum if the (one) observation which is classified as normal is the one with the highest $p(x_i | {\rm N})$. Similarly, if P = 2 then the two observations to be classified as normal are the one with the first two highest $p(x_i | {\rm N})$. Etc.



p

13/29

 \uparrow cumulative sum of sorted $p(x_i | N)$ shows the classification success rate for N, that is, $1 - \epsilon_N$, for $\epsilon_D = \frac{1}{8}, \frac{2}{8}, ..., 1$. For example, for $\epsilon_D = \frac{2}{8}$ (P = 2), $\epsilon_N = 1 - 0.45 = 0.55$ (as shown, dashed.)

Neyman Pearson : Towards General Case (2)

In general, $p(x_i | D) \neq \text{const.}$ Consider the following example:

	$p(x_i \mid D)$)		$p(x_i \mid N)$	I)
x_1	x_2	x_3	x_1	x_2	x_3
0.5	0.25	0.25	0.6	0.35	0.05

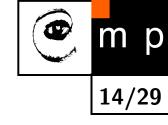
But this can easily be converted to the previous special case by (only formally) splitting x_1 to two observations x'_1 and x''_1 :

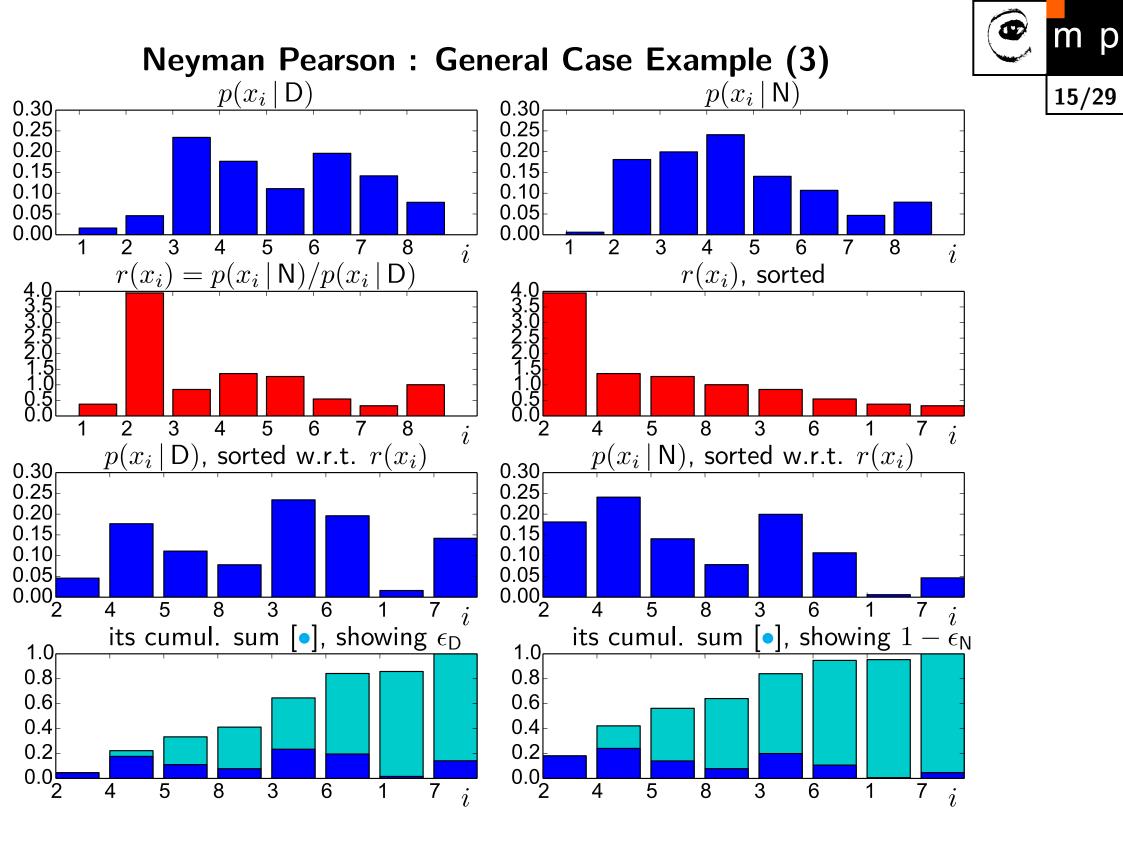
	$p(x_i)$	D)			p(x)	$c_i N)$	
x'_1	x_1''	x_2	x_3	x'_1	x_1''	x_2	x_3
0.25	0.25	0.25	0.25	0.3	0.3	0.35	0.05

which would result in ordering the observations by decreasing $p(x_i | N)$ as: x_2, x_1, x_3 .

Obviously, the same ordering is obtained when $p(x_i | N)$ is 'normalized' by $p(x_i | D)$, that is, using the likelihood ratio

$$r(x_i) = \frac{p(x_i \mid \mathsf{N})}{p(x_i \mid \mathsf{D})}.$$
(13)





Lagrangian of the Neyman Pearson Task is

$$L(q) = \sum_{\substack{x: q(x) = \mathsf{D}}} p(x \mid \mathsf{N}) + \mu \left(\sum_{\substack{x: q(x) = \mathsf{N}}} p(x \mid \mathsf{D}) - \bar{\epsilon}_D \right)$$
(14)
$$= \underbrace{1 - \sum_{x:q(x) = \mathsf{N}}}_{x:q(x) = \mathsf{N}} p(x \mid \mathsf{N}) + \mu \left(\sum_{\substack{x: q(x) = \mathsf{N}}} p(x \mid \mathsf{D}) \right) - \mu \bar{\epsilon}_{\mathsf{D}}$$
(15)
$$= 1 - \mu \bar{\epsilon}_{\mathsf{D}} + \sum_{\substack{x: q(x) = \mathsf{N}}} \underbrace{\{\mu p(x \mid \mathsf{D}) - p(x \mid \mathsf{N})\}}_{T(x)}$$
(16)

If T(x) is negative for an x then it will decrease the objective function and the optimal strategy q^* will decide $q^*(x) = N$. This illustrates why the solution to the Neyman Pearson Task has the form

$$\frac{p(x \mid \mathsf{N})}{p(x \mid \mathsf{D})} > \mu \quad \Rightarrow \quad q(x) = \mathsf{N} ,$$

$$\frac{p(x \mid \mathsf{N})}{p(x \mid \mathsf{D})} \le \mu \quad \Rightarrow \quad q(x) = \mathsf{D} .$$
(9)
(10)

Neyman Pearson : Derivation (1)

$$q^* = \min_{q:X \to K} \sum_{x:q(x) \neq \mathsf{N}} p(x \mid \mathsf{N}) \qquad \text{subject to:} \sum_{x:q(x) \neq \mathsf{D}} p(x \mid \mathsf{D}) \le \bar{\epsilon}_{\mathsf{D}}.$$
(17)

Let us rewrite this as

$$q^* = \min_{q:X \to K} \sum_{x \in X} \alpha(x) p(x \mid \mathsf{N}) \qquad \text{subject to:} \qquad \sum_{x \in X} [1 - \alpha(x)] p(x \mid \mathsf{D}) \le \bar{\epsilon}_{\mathsf{D}}. \tag{18}$$
$$\text{and:} \qquad \alpha(x) \in \{0, 1\} \ \forall x \in X \tag{19}$$

This is a combinatorial optimization problem. If the relaxation is done from $\alpha(x) \in \{0, 1\}$ to $0 \le \alpha(x) \le 1$, this can be solved by **linear programming** (LP). The Lagrangian of this problem with inequality constraints is:

$$L(\alpha(x_{1}), \alpha(x_{2}), ..., \alpha(x_{N})) = \sum_{x \in X} \alpha(x) p(x \mid \mathsf{N}) + \mu \left(\sum_{x \in X} [1 - \alpha(x)] p(x \mid \mathsf{D}) - \bar{\epsilon}_{\mathsf{D}} \right) \quad (20)$$
$$- \sum_{x \in X} \mu_{0}(x) \alpha(x) + \sum_{x \in X} \mu_{1}(x) (\alpha(x) - 1) \quad (21)$$

Neyman Pearson : Derivation (2)

$$L(\alpha(x_{1}), \alpha(x_{2}), ..., \alpha(x_{N})) = \sum_{x \in X} \alpha(x)p(x \mid \mathsf{N}) + \mu \left(\sum_{x \in X} [1 - \alpha(x)]p(x \mid \mathsf{D}) - \bar{\epsilon}_{\mathsf{D}}\right) \quad (20)$$
$$-\sum_{x \in X} \mu_{0}(x)\alpha(x) + \sum_{x \in X} \mu_{1}(x)(\alpha(x) - 1) \quad (21)$$

The conditions for optimality are $(\forall x \in X)$:

$$\frac{\partial L}{\partial \alpha(x)} = p(x \mid \mathsf{N}) - \mu p(x \mid \mathsf{D}) - \mu_0(x) + \mu_1(x) = 0, \qquad (22)$$

$$\mu \ge 0, \ \mu_0(x) \ge 0, \ \mu_1(x) \ge 0, \quad 0 \le \alpha(x) \le 1,$$
 (23)

р

$$\mu_0(x)\alpha(x) = 0, \ \mu_1(x)(\alpha(x) - 1) = 0, \ \mu\left(\sum_{x \in X} [1 - \alpha(x)]p(x \mid \mathsf{D}) - \bar{\epsilon}_\mathsf{D}\right) = 0.$$
(24)

Case-by-case analysis:

case	implications
$\mu = 0$	L minimized by $\alpha(x) = 0 \forall x$
$\mu \neq 0, \alpha(x) = 0$	$\mu_1(x) = 0 \Rightarrow \mu_0(x) = p(x \mid N) - \mu p(x \mid D) \Rightarrow \frac{p(x \mid N)}{p(x \mid D)} \le \mu$
$\mu \neq 0, \alpha(x) = 1$	$\mu_0(x) = 0 \Rightarrow \mu_1(x) = -[p(x \mid N) - \mu p(x \mid D)] \Rightarrow \frac{p(x \mid N)}{p(x \mid D)} \ge \mu$
$egin{array}{ccc} \mu & eq 0, \ 0 < lpha(x) < 1 \end{array}$	$\mu_0(x) = \mu_1(x) = 0 \Rightarrow \frac{p(x \mid N)}{p(x \mid D)} = \mu$

Neyman Pearson : Derivation (3)

Case-by-case analysis:

case	implications
$\mu = 0$	L minimized by $\alpha(x) = 0 \forall x$
$\mu \neq 0, \alpha(x) = 0$	$\mu_1(x) = 0 \Rightarrow \mu_0(x) = p(x \mid N) - \mu p(x \mid D) \Rightarrow \frac{p(x \mid N)}{p(x \mid D)} \le \mu$
$\mu \neq 0, \alpha(x) = 1$	$ \mu_0(x) = 0 \Rightarrow \mu_1(x) = -[p(x \mid N) - \mu p(x \mid D)] \Rightarrow \frac{p(x \mid N) / p(x \mid D) \ge \mu}{p(x \mid N) / p(x \mid D) \ge \mu} $
$egin{array}{ccc} \mu & eq 0, \ 0 < lpha(x) < 1 \end{array}$	$\mu_0(x) = \mu_1(x) = 0 \Rightarrow \frac{p(x \mid N)}{p(x \mid D)} = \mu$

Optimal Strategy for a given $\mu \ge 0$ and particular $x \in X$:

 $\frac{p(x \mid \mathsf{N})}{p(x \mid \mathsf{D})} \quad \begin{cases} < \mu \quad \Rightarrow q(x) = \mathsf{D} \text{ (as } \alpha(x) = 0) \\ > \mu \quad \Rightarrow q(x) = \mathsf{N} \text{ (as } \alpha(x) = 1) \\ = \mu \quad \Rightarrow \mathsf{LP} \text{ relaxation does not give the desired solution, as } \alpha \notin \{0, 1\} \end{cases}$ (25)

(26)

Consider:

p(x D)					
x_1	x_2	x_3			
0.9	0.09	0.01			

		p(x N)				
	x_1	$x_1 x_2 x_3$				
L	0.09	0.9	0.01			

r(x) = p(x N)/p(x D)				
x_1	x_2	x_3		
0.1	10	1		

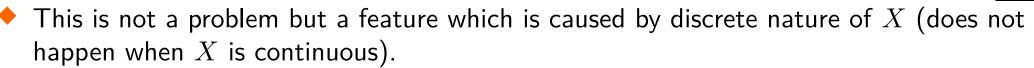
and $\bar{\epsilon}_{\rm D} = 0.03$.

- q₁: (x₁, x₂, x₃) → (D, D, D) ⇒ ϵ_D = 0.00, ϵ_N = 1.00
 q₂: (x₁, x₂, x₃) → (D, D, N) ⇒ ϵ_D = 0.01, ϵ_N = 0.99
- no other deterministic strategy q is feasible, that is all other ones have $\epsilon_{\rm D} > \overline{\epsilon}_{\rm D}$
- \bullet q_2 is the best deterministic strategy but it does not comply with the previous basic result of constructing the optimal strategy because it decides for N for likelihood ratio 1 but decides for D for likelihood ratios 0.01 and 10. Why is that?
 - we can construct a randomized strategy which attains $\overline{\epsilon}_{\rm D}$ and reaches lower $\epsilon_{\rm N}$:

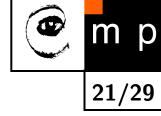
$$q(x_1) = q(x_3) = \mathsf{D}, \quad q(x_2) = egin{cases} \mathsf{N} & 1/3 \text{ of the time} \\ \mathsf{D} & 2/3 \text{ of the time} \end{cases}$$

For such strategy, $\epsilon_{\rm D} = 0.03$, $\epsilon_{\rm N} = 0.7$.

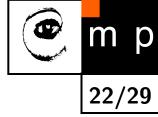
Neyman Pearson : Note on Randomized Strategies (2)



• This is exactly what the case of $\mu = p(x \mid N)/p(x \mid D)$ is on slide 18.



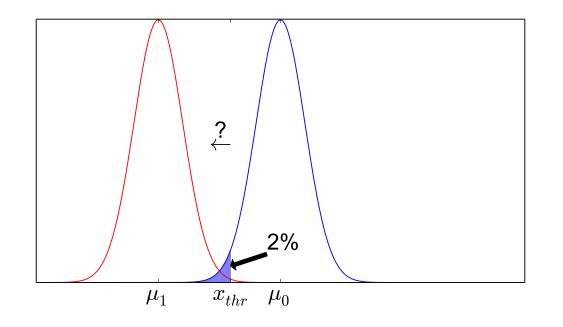
Neyman Pearson : Notes (1)



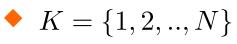
- The task can be generalized to 3 hidden states, of which 2 are dangerous, K = {N, D₁, D₂}. It is formulated as an analogous problem with two inequality constraints and minimization of classification error for N.
- Neyman's and Pearson's work dates to 1928 and 1933.
- A particular strength of the approach lies in that the likelihood ratio r(x) or even p(x | N) need not be known. For the task to be solved, it is enough to know the p(x | D) and the **rank order** of the likelihood ratio (to be demonstrated on the next page)

Neyman Pearson : Notes (2)

Consider a medicine for reducing weight. The normal population has a distribution of weight p(x | D) as shown in blue. Let it be normal, p(x | D) = N(x | μ₀, σ). The distribution of weights after 1 month of taking the medicine is assumed to be normal as well, with the same variance but uknown shift of mean to the left, p(x | N) = N(x | μ₁, σ), with μ₁ < μ₀ but otherwise unknown (shown in red). The likelihood ratio is r(x) = exp ¹/_{2σ²} (-(x - μ₁)² + (x - μ₀)²) = exp (¹/_{σ²}(μ₁ - μ₀)x + const). It is thus decreasing (monotone) with x (irrespective of μ₁, μ₁ < μ₀).
Setting ē_D = 0.02, we go along the decreasing r(x) and find the point x_{thr} for which ∫^{x_{thr}} p(x | D) = ē_D = 0.02 (0.02-quantile). Note that the threshold μ on r(x) is still uknown as p(x | N) is unknown.



Minimax Task



- X set of observations
- Conditionals $p(x \mid k)$ are known $\forall k \in K$
- The priors p(k) are unknown or do not exist
- $q: X \to K$ strategy

The Minimax Task looks for the optimum strategy q^* which minimizes the classification error of the worst classified class:

$$q^* = \underset{q:X \to K}{\operatorname{argmin}} \max_{k \in K} \epsilon(k), \quad \text{where}$$

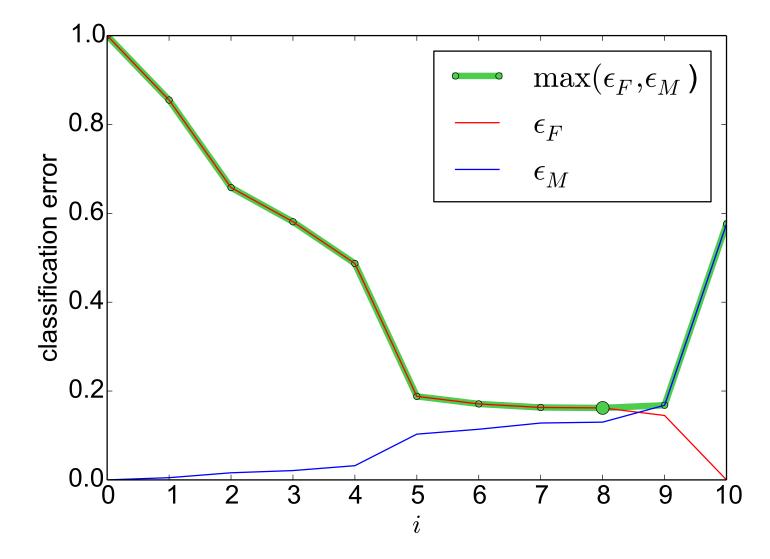
$$\epsilon(k) = \sum_{x:q(x) \neq k} p(x \mid k)$$
(27)
(28)

Example: A recognition algorithm qualifies for a competition using preliminary tests.
 During the final competition, only objects from the hardest-to-classify class are used.

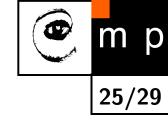
- For a 2-class problem, the strategy is again constructed using the likelihood ratio.
- In the case of continuous observations space X, equality of classification errors is attained: $\epsilon_1 = \epsilon_2$
- The derivation can again be done using Linear Programming.

Example: Male/Female Recognition (Minimax)

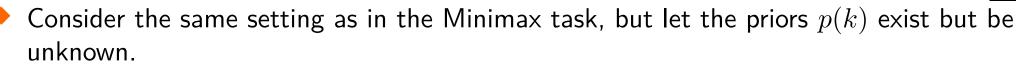
Classification errors for F and M, for $\mu_i = \frac{r_i + r_{i+1}}{2}$ and $\mu_0 = 0$.



The optimum is attained for i = 8, $\epsilon_F = .162$, $\epsilon_M = .13$. The corresponding strategy is as shown on slide 11.



Minimax: Comparison with Bayesian Decision with Unknown Priors



• The Bayesian error ϵ for strategy q is

$$\epsilon = \sum_{k} \sum_{x: q(x) \neq k} p(x, k) = \sum_{k} p(k) \underbrace{\sum_{x: q(x) \neq k} p(x \mid k)}_{\epsilon(k)}$$
(29)

- We want to minimize ϵ but we do not know p(k)'s. What is the maximum it can attain? Obviously, the p(k)'s do the convex combination of the class errors $\epsilon(k)$; the maximum Bayesian error will be attained when p(k) = 1 for the class k with the highest class error $\epsilon(k)$.
- Thus, to minimize the Bayesian error ϵ under this setting, the solution is to minimize the error of the hardest-to-classify class.
- Therefore, Minimax formulation and the Bayesian formulation with Unknown Priors lead to the same solution.

Wald Task (1)

- Let us consider classification with two states, $K = \{1, 2\}$.
- We want to set a threshold ϵ on the classification error of both of the classes: $\epsilon_1 \leq \epsilon$, $\epsilon_2 \leq \epsilon$.
- It is clear that there may be **no** feasible solution if ϵ is set too low.
- That is why the possibility of decision "do not know" is introduced. Thus $D = K \cup \{?\}$

• A strategy $q: X \to D$ is characterized by:

$$\epsilon_1 = \sum_{x: q(x)=2} p(x \mid 1) \quad \text{(classification error for 1)} \tag{30}$$

р

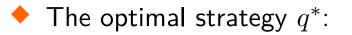
27/29

$$\epsilon_2 = \sum_{x: q(x)=1} p(x \mid 2) \quad \text{(classification error for 2)} \tag{31}$$

$$\kappa_1 = \sum_{x: q(x)=?} p(x \mid 1) \quad \text{(undecided rate for 1)}$$
(32)

$$\kappa_2 = \sum_{x: q(x)=?} p(x \mid 2) \quad \text{(undecided rate for 2)}$$
(33)

Wald Task (2)



$$q^* = \underset{q:X \to D}{\operatorname{argmin}} \max_{i=\{1,2\}} \kappa_i$$
subject to: $\epsilon_1 \le \epsilon, \epsilon_2 \le \epsilon$
(34)
(35)

The task is again solvable using LP (even for more than 2 classes)

The optimal solution is again based on the likelihood ratio

$$r(x) = \frac{p(x \mid 1)}{p(x \mid 2)}$$
(36)

The optimal strategy is constructed using suitably chosen thresholds μ_l and μ_h such that:

$$q(x) = \begin{cases} 2 & \text{for } r(x) < \mu_l \\ 1 & \text{for } r(x) > \mu_h \\ ? & \text{for } \mu_l \le r(x) \le \mu_h \end{cases}$$
(37)

Solve the Wald task for $\epsilon=0.05.$

	p	$\mathbf{F}(x F)$			
short	.197	.145	.094	.017	sh
normal	.077	.299	.145	.017	nori
tall	.001	.008	.000	.000	
	u-light	light	avg	heavy	

p(x M)							
short	.011	.005	.011	.011			
normal	.005	.071	.408	.038			
tall	.002	.014	.255	.169			
	u-light	light	avg	heavy			

r(x) = p(x M)/p(x F)						
short	0.056	0.034	0.117	0.647		
normal	0.065	0.237	2.814	2.235		
tall	2.000	1.750	∞	∞		
	u-light	light	avg	heavy		

rank,	and	$q^*($	(x) =	{ F ,	Μ,	?}
-------	-----	--------	-------	--------------	----	----

short	2	1	4	6
normal	3	5	10	9
tall	8	7	11	12
	u-light	light	avg	heavy

Result: $\epsilon_{M} = 0.032$, $\epsilon_{F} = 0$, $\kappa_{M} = 0.544$, $\kappa_{F} = 0.487$

$$(r_4 < \mu_l < r_5, \ r_{10} < \mu_h < \infty)$$