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Lecture Outline

1. Limitations of Bayesian Decision Theory

2. Neyman Pearson Task

3. Minimax Task

4. Wald Task
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Bayesian Decision Theory

Recall:

X set of observations

K set of hidden states

D set of decisions

pXK : X ×K → R: joint probability

W : K ×D → R: loss function,

q : X → D: strategy

R(q) : risk:
R(q) =

∑
x∈X

∑
k∈K

pXK(x, k) W (k, q(x)) (1)

Bayesian strategy q∗:
q∗ = argmin

q∈X→D
R(q) (2)
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Limitations of the Bayesian Decision Theory

The limitations follow from the very ingredients of the Bayesian Decision Theory — the
necessity to know all the probabilities and the loss function.

� The loss function W must make sense, but in many tasks it wouldn’t
• medical diagnosis task (W : price of medicines, staff labor, etc. but what penalty in

case of patient’s death?) Uncomparable penalties on different axes of X.
• nuclear plant
• judicial error

� The prior probabilities pK(k): must exist and be known. But in some cases it does not
make sense to talk about probabilities because the events are not random.
• K = {1, 2} ≡ {own army plane, enemy plane};
p(x|1), p(x|2) do exist and can be estimated, but p(1) and p(2) don’t.

� The conditionals may be subject to non-random intervention; p(x | k, z) where
z ∈ Z = {1, 2, 3} are different interventions.
• a system for handwriting recognition: The training set has been prepared by 3

different persons. But the test set has been constructed by one of the 3 persons
only. This cannot be done:

(!) p(x | k) =
∑
z

p(z)p(x | k, z) (3)
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Neyman Pearson Task

� K = {D, N} (dangerous state, normal state)
� X set of observations
� Conditionals p(x |D), p(x |N) are given
� The priors p(D) and p(N) are unknown or do not exist
� q : X → K strategy

The Neyman Person Task looks for the optimal strategy q∗ for which
i) the error of classification of the dangerous state is lower than a predefined threshold ε̄D

(0 < ε̄D < 1), while
ii) the classification error for the normal state is as low as possible.

This is formulated as an optimization task with an inequality constraint:

q∗ = argmin
q:X→K

∑
x:q(x) 6=N

p(x |N) (4)

subject to:
∑

x:q(x) 6=D

p(x |D) ≤ ε̄D . (5)
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Neyman Pearson Task

(copied from the previous slide:)

q∗ = argmin
q:X→K

∑
x:q(x) 6=N

p(x |N) (4)

subject to:
∑

x:q(x) 6=D

p(x |D) ≤ ε̄D . (5)

A strategy is characterized by the classification error values εN and εD:

εN =
∑

x:q(x) 6=N

p(x |N) (false alarm) (6)

εD =
∑

x:q(x) 6=D

p(x |D) (overlooked danger) (7)
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Example: Male/Female Recognition (Neyman Pearson) (1)

An aging student at CTU wants to marry. He can’t afford to miss recognizing a girl when he
meets her, therefore he sets the threshold on female classification error to ε̄D = 0.2. At the
same time, he wants to minimize mis-classifying boys for girls.

� K = {D,N} ≡ {F,M} (female, male)
� measurements X = {short, normal, tall} × {ultralight, light, avg, heavy}
� Prior probabilities do not exist.
� Conditionals are given as follows:

p(x|F)
short .197 .145 .094 .017

normal .077 .299 .145 .017
tall .001 .008 .000 .000

u-
lig
ht

lig
ht

av
g

he
av
y

p(x|M)
short .011 .005 .011 .011

normal .005 .071 .408 .038
tall .002 .014 .255 .169

u-
lig
ht

lig
ht

av
g

he
av
y

(8)
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Neyman Pearson : Solution

The optimal strategy q∗ for a given x ∈ X is constructed using the likelihood ratio p(x |N)
p(x |D).

Let there be a constant µ ≥ 0. Given this µ, a strategy q is constructed as follows:

p(x |N)

p(x |D)
> µ ⇒ q(x) = N , (9)

p(x |N)

p(x |D)
≤ µ ⇒ q(x) = D . (10)

The optimal strategy q∗ is obtained by selecting the minimal µ for which there still holds
that εD ≤ ε̄D.

Let us show this on an example.
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Example: Male/Female Recognition (Neyman Pearson) (2)

p(x|F)
short .197 .145 .094 .017

normal .077 .299 .145 .017
tall .001 .008 .000 .000

u-
lig
ht

lig
ht

av
g

he
av
y

p(x|M)
short .011 .005 .011 .011

normal .005 .071 .408 .038
tall .002 .014 .255 .169

u-
lig
ht

lig
ht

av
g

he
av
y

r(x) = p(x|M)/p(x|F)
short 0.056 0.034 0.117 0.647

normal 0.065 0.237 2.814 2.235
tall 2.000 1.750 ∞ ∞

u-
lig
ht

lig
ht

av
g

he
av
y

rank order of p(x|M)/p(x|F)
short 2 1 4 6

normal 3 5 10 9
tall 8 7 11 12

u-
lig
ht

lig
ht

av
g

he
av
y

Here, different µ’s can produce 11 different strategies.

First, let us take 2.814 < µ <∞, e.g. µ = 3. This produces a strategy q∗(x) = F
everywhere except where p(x|F) = 0. Obviously, classification error εF for F is εF = 0, and
εM = 1− .255− .169 = .576.
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Example: Male/Female Recognition (Neyman Pearson) (3)

p(x|F)
short .197 .145 .094 .017

normal .077 .299 .145 .017
tall .001 .008 .000 .000

u-
lig
ht

lig
ht

av
g

he
av
y

p(x|M)
short .011 .005 .011 .011

normal .005 .071 .408 .038
tall .002 .014 .255 .169

u-
lig
ht

lig
ht

av
g

he
av
y

r(x) = p(x|M)/p(x|F)
short 0.056 0.034 0.117 0.647

normal 0.065 0.237 2.814 2.235
tall 2.000 1.750 ∞ ∞

u-
lig
ht

lig
ht

av
g

he
av
y

rank, and q∗(x) = {F,M} for µ = 2.5
short 2 1 4 6

normal 3 5 10 9
tall 8 7 11 12

u-
lig
ht

lig
ht

av
g

he
av
y

Next, take µ which satisfies

r9 < µ < r10 (e.g. µ = 2.5) (11)

(where ri is the likelihood ratios indexed by its rank.)

Here, εF = .145, and εM = 1− .255− .169− .408 = .168.
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Example: Male/Female Recognition (Neyman Pearson) (4)

p(x|F)
short .197 .145 .094 .017

normal .077 .299 .145 .017
tall .001 .008 .000 .000

u-
lig
ht

lig
ht

av
g

he
av
y

p(x|M)
short .011 .005 .011 .011

normal .005 .071 .408 .038
tall .002 .014 .255 .169

u-
lig
ht

lig
ht

av
g

he
av
y

r(x) = p(x|M)/p(x|F)
short 0.056 0.034 0.117 0.647

normal 0.065 0.237 2.814 2.235
tall 2.000 1.750 ∞ ∞

u-
lig
ht

lig
ht

av
g

he
av
y

rank, and q∗(x) = {F,M} for µ = 2.1
short 2 1 4 6

normal 3 5 10 9
tall 8 7 11 12

u-
lig
ht

lig
ht

av
g

he
av
y

Do the same for µ satisfying

r8 < µ < r9 (e.g. µ = 2.1) (12)

⇒ εF = .162, and εM = 0.13.
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Example: Male/Female Recognition (Neyman Pearson) (5)

Classification errors for F and M, for µi =
ri+ri+1

2 and µ0 = 0.

0 1 2 3 4 5 6 7 8 9 10
i

0.0

0.2

0.4

0.6

0.8

1.0

cl
as

si
fic

at
io

n 
er

ro
r

εD =0.2

εF
εM

The optimum is reached for r5 < µ < r6; εF = .188, εM = .103
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Neyman Pearson : Simple Case (1)

p(xi |N)

i

p(xi |D)

i
p(xi |N), sorted

i
p(xi |N), sorted and its cumul. sum [•]

i

Consider a simple case when
p(xi |D) = const. Possible values for
εD are 0, 18,

2
8, ..., 1. If a strategy q

classifies P observations as normal
then εD = P

8 .
If P = 1 then εD = 1

8 and it is clear
that εN will attain minimum if the
(one) observation which is classified as
normal is the one with the highest
p(xi |N). Similarly, if P = 2 then the
two observations to be classified as
normal are the one with the first two
highest p(xi |N). Etc.

↑ cumulative sum of sorted p(xi |N) shows
the classification success rate for N, that
is, 1− εN, for εD = 1

8,
2
8, ..., 1. For example,

for εD = 2
8 (P = 2), εN = 1− 0.45 = 0.55

(as shown, dashed.)

1 2 3 4 5 6 7 80.00
0.05
0.10
0.15
0.20
0.25
0.30

1 2 3 4 5 6 7 80.00
0.05
0.10
0.15
0.20
0.25
0.30

1 4 8 6 7 2 3 50.00
0.05
0.10
0.15
0.20
0.25
0.30

1 4 8 6 7 2 3 50.0
0.2
0.4
0.6
0.8
1.0
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Neyman Pearson : Towards General Case (2)

In general, p(xi |D) 6= const. Consider the following example:

p(xi |D) p(xi |N)
x1 x2 x3
0.5 0.25 0.25

x1 x2 x3
0.6 0.35 0.05

But this can easily be converted to the previous special case by (only formally) splitting x1
to two observations x′1 and x′′1 :

p(xi |D) p(xi |N)
x′1 x′′1 x2 x3
0.25 0.25 0.25 0.25

x′1 x′′1 x2 x3
0.3 0.3 0.35 0.05

which would result in ordering the observations by decreasing p(xi |N) as: x2, x1, x3.

Obviously, the same ordering is obtained when p(xi |N) is ’normalized’ by p(xi |D), that is,
using the likelihood ratio

r(xi) =
p(xi |N)

p(xi |D)
. (13)
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Neyman Pearson : General Case Example (3)

p(xi |N)

i

p(xi |D)

i

p(xi |N), sorted w.r.t. r(xi)p(xi |D), sorted w.r.t. r(xi)

i

r(xi), sorted

i

r(xi) = p(xi |N)/p(xi |D)

i

i
its cumul. sum [•], showing 1− εN

i

its cumul. sum [•], showing εD

i

1 2 3 4 5 6 7 80.00
0.05
0.10
0.15
0.20
0.25
0.30

1 2 3 4 5 6 7 80.00
0.05
0.10
0.15
0.20
0.25
0.30

1 2 3 4 5 6 7 80.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

2 4 5 8 3 6 1 70.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

2 4 5 8 3 6 1 70.00
0.05
0.10
0.15
0.20
0.25
0.30

2 4 5 8 3 6 1 70.00
0.05
0.10
0.15
0.20
0.25
0.30

2 4 5 8 3 6 1 70.0
0.2
0.4
0.6
0.8
1.0

2 4 5 8 3 6 1 70.0
0.2
0.4
0.6
0.8
1.0
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Neyman Pearson Solution : Illustration of Principle

Lagrangian of the Neyman Pearson Task is

L(q) =
∑

x: q(x)=D

p(x |N)︸ ︷︷ ︸+µ

 ∑
x: q(x)=N

p(x |D)− ε̄D

 (14)

=

=︷ ︸︸ ︷
1−

∑
x:q(x)=N

p(x |N) +µ

 ∑
x: q(x)=N

p(x |D)

− µε̄D (15)

=1− µε̄D +
∑

x: q(x)=N

{µ p(x |D)− p(x |N)}︸ ︷︷ ︸
T (x)

(16)

If T (x) is negative for an x then it will decrease the objective function and the optimal
strategy q∗ will decide q∗(x) = N. This illustrates why the solution to the Neyman Pearson
Task has the form

p(x |N)

p(x |D)
> µ ⇒ q(x) = N , (9)

p(x |N)

p(x |D)
≤ µ ⇒ q(x) = D . (10)
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Neyman Pearson : Derivation (1)

q∗ = min
q:X→K

∑
x:q(x) 6=N

p(x |N) subject to:
∑

x:q(x) 6=D

p(x |D) ≤ ε̄D . (17)

Let us rewrite this as

q∗ = min
q:X→K

∑
x∈X

α(x)p(x |N) subject to:
∑
x∈X

[1− α(x)]p(x |D) ≤ ε̄D . (18)

and: α(x) ∈ {0, 1} ∀x ∈ X (19)

This is a combinatorial optimization problem. If the relaxation is done from α(x) ∈ {0, 1} to
0 ≤ α(x) ≤ 1, this can be solved by linear programming (LP). The Lagrangian of this
problem with inequality constraints is:

L(α(x1), α(x2), ..., α(xN)) =
∑
x∈X

α(x)p(x |N) + µ

(∑
x∈X

[1− α(x)]p(x |D)− ε̄D

)
(20)

−
∑
x∈X

µ0(x)α(x) +
∑
x∈X

µ1(x)(α(x)− 1) (21)

http://cmp.felk.cvut.cz
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Neyman Pearson : Derivation (2)

L(α(x1), α(x2), ..., α(xN)) =
∑
x∈X

α(x)p(x |N) + µ

(∑
x∈X

[1− α(x)]p(x |D)− ε̄D

)
(20)

−
∑
x∈X

µ0(x)α(x) +
∑
x∈X

µ1(x)(α(x)− 1) (21)

The conditions for optimality are (∀x ∈ X):

∂L

∂α(x)
= p(x |N)− µp(x |D)− µ0(x) + µ1(x) = 0, (22)

µ ≥ 0, µ0(x) ≥ 0, µ1(x) ≥ 0, 0 ≤ α(x) ≤ 1, (23)

µ0(x)α(x) = 0, µ1(x)(α(x)− 1) = 0, µ

(∑
x∈X

[1− α(x)]p(x |D)− ε̄D

)
= 0. (24)

Case-by-case analysis:
case implications
µ = 0 L minimized by α(x) = 0 ∀x
µ 6= 0, α(x) = 0 µ1(x) = 0⇒ µ0(x) = p(x |N)− µp(x |D)⇒ p(x |N)/p(x |D) ≤ µ
µ 6= 0, α(x) = 1 µ0(x) = 0⇒ µ1(x) = −[p(x |N)− µp(x |D)]⇒ p(x |N)/p(x |D) ≥ µ
µ 6= 0,
0 < α(x) < 1

µ0(x) = µ1(x) = 0⇒ p(x |N)/p(x |D) = µ

http://cmp.felk.cvut.cz
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Neyman Pearson : Derivation (3)

Case-by-case analysis:
case implications
µ = 0 L minimized by α(x) = 0 ∀x
µ 6= 0, α(x) = 0 µ1(x) = 0⇒ µ0(x) = p(x |N)− µp(x |D)⇒ p(x |N)/p(x |D) ≤ µ
µ 6= 0, α(x) = 1 µ0(x) = 0⇒ µ1(x) = −[p(x |N)− µp(x |D)]⇒ p(x |N)/p(x |D) ≥ µ
µ 6= 0,
0 < α(x) < 1

µ0(x) = µ1(x) = 0⇒ p(x |N)/p(x |D) = µ

Optimal Strategy for a given µ ≥ 0 and particular x ∈ X:

p(x |N)

p(x |D)


< µ ⇒ q(x) = D (as α(x) = 0)
> µ ⇒ q(x) = N (as α(x) = 1)
= µ ⇒ LP relaxation does not give the desired solution, as α /∈ {0, 1}

(25)

http://cmp.felk.cvut.cz
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Neyman Pearson : Note on Randomized Strategies (1)

Consider:

p(x|D)
x1 x2 x3
0.9 0.09 0.01

p(x|N)
x1 x2 x3
0.09 0.9 0.01

r(x) = p(x|N)/p(x|D)
x1 x2 x3
0.1 10 1

and ε̄D =0.03.
� q1 : (x1, x2, x3)→ (D,D,D) ⇒ εD = 0.00, εN = 1.00

� q2 : (x1, x2, x3)→ (D,D,N) ⇒ εD = 0.01, εN = 0.99

� no other deterministic strategy q is feasible, that is all other ones have εD > ε̄D

� q2 is the best deterministic strategy but it does not comply with the previous basic
result of constructing the optimal strategy because it decides for N for likelihood ratio 1
but decides for D for likelihood ratios 0.01 and 10. Why is that?

� we can construct a randomized strategy which attains ε̄D and reaches lower εN:

q(x1) = q(x3) = D, q(x2) =

{
N 1/3 of the time
D 2/3 of the time

(26)

For such strategy, εD = 0.03 , εN = 0.7.
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Neyman Pearson : Note on Randomized Strategies (2)

� This is not a problem but a feature which is caused by discrete nature of X (does not
happen when X is continuous).

� This is exactly what the case of µ = p(x |N)/p(x |D) is on slide 18.
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Neyman Pearson : Notes (1)

� The task can be generalized to 3 hidden states, of which 2 are dangerous,
K = {N,D1,D2}. It is formulated as an analogous problem with two inequality
constraints and minimization of classification error for N.

� Neyman’s and Pearson’s work dates to 1928 and 1933.

� A particular strength of the approach lies in that the likelihood ratio r(x) or even
p(x |N) need not be known. For the task to be solved, it is enough to know the p(x |D)
and the rank order of the likelihood ratio
(to be demonstrated on the next page)
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Neyman Pearson : Notes (2)

� Consider a medicine for reducing weight. The normal population has a distribution
of weight p(x |D) as shown in blue. Let it be normal, p(x |D) = N (x |µ0, σ). The
distribution of weights after 1 month of taking the medicine is assumed to be normal as
well, with the same variance but uknown shift of mean to the left,
p(x |N) = N (x |µ1, σ), with µ1 < µ0 but otherwise unknown (shown in red).
The likelihood ratio is
r(x) = exp 1

2σ2

(
−(x− µ1)

2 + (x− µ0)
2
)

= exp
(

1
σ2

(µ1 − µ0)x+ const
)
. It is thus

decreasing (monotone) with x (irrespective of µ1, µ1 < µ0).
� Setting ε̄D = 0.02, we go along the decreasing r(x) and find the point xthr for which∫ xthr
−∞ p(x |D) = ε̄D = 0.02 (0.02-quantile). Note that the threshold µ on r(x) is still
uknown as p(x |N) is unknown.

µ1 xthr µ0

←?

2%
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Minimax Task

� K = {1, 2, .., N}
� X set of observations
� Conditionals p(x | k) are known ∀k ∈ K
� The priors p(k) are unknown or do not exist
� q : X → K strategy

The Minimax Task looks for the optimum strategy q∗ which minimizes the classification
error of the worst classified class:

q∗ = argmin
q:X→K

max
k∈K

ε(k), where (27)

ε(k) =
∑

x: q(x) 6=k

p(x | k) (28)

� Example: A recognition algorithm qualifies for a competition using preliminary tests.
During the final competition, only objects from the hardest-to-classify class are used.

� For a 2-class problem, the strategy is again constructed using the likelihood ratio.
� In the case of continuous observations space X, equality of classification errors is
attained: ε1 = ε2

� The derivation can again be done using Linear Programming.
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Example: Male/Female Recognition (Minimax)

Classification errors for F and M, for µi =
ri+ri+1

2 and µ0 = 0.

0 1 2 3 4 5 6 7 8 9 10
i

0.0

0.2

0.4

0.6

0.8

1.0

cl
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n 
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r

max(εF ,εM )
εF

εM

The optimum is attained for i = 8, εF = .162, εM = .13. The corresponding strategy is as
shown on slide 11.
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Minimax: Comparison with Bayesian Decision with
Unknown Priors

� Consider the same setting as in the Minimax task, but let the priors p(k) exist but be
unknown.

� The Bayesian error ε for strategy q is

ε =
∑
k

∑
x: q(x) 6=k

p(x, k) =
∑
k

p(k)
∑

x: q(x) 6=k

p(x | k)︸ ︷︷ ︸
ε(k)

(29)

� We want to minimize ε but we do not know p(k)’s. What is the maximum it can
attain? Obviously, the p(k)’s do the convex combination of the class errors ε(k); the
maximum Bayesian error will be attained when p(k) = 1 for the class k with the highest
class error ε(k).

� Thus, to minimize the Bayesian error ε under this setting, the solution is to minimize
the error of the hardest-to-classify class.

� Therefore, Minimax formulation and the Bayesian formulation with Unknown Priors
lead to the same solution.
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Wald Task (1)

� Let us consider classification with two states, K = {1, 2}.

� We want to set a threshold ε on the classification error of both of the classes: ε1 ≤ ε,
ε2 ≤ ε.

� It is clear that there may be no feasible solution if ε is set too low.

� That is why the possibility of decision “do not know” is introduced. Thus D = K ∪ {?}

� A strategy q : X → D is characterized by:

ε1 =
∑

x: q(x)=2

p(x | 1) (classification error for 1) (30)

ε2 =
∑

x: q(x)=1

p(x | 2) (classification error for 2) (31)

κ1 =
∑

x: q(x)=?

p(x | 1) (undecided rate for 1) (32)

κ2 =
∑

x: q(x)=?

p(x | 2) (undecided rate for 2) (33)
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Wald Task (2)

� The optimal strategy q∗:

q∗ = argmin
q:X→D

max
i={1,2}

κi (34)

subject to: ε1 ≤ ε, ε2 ≤ ε (35)

� The task is again solvable using LP (even for more than 2 classes)

� The optimal solution is again based on the likelihood ratio

r(x) =
p(x | 1)

p(x | 2)
(36)

� The optimal strategy is constructed using suitably chosen thresholds µl and µh such
that:

q(x) =


2 for r(x) < µl

1 for r(x) > µh

? for µl ≤ r(x) ≤ µh
(37)
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Example: Male/Female Recognition (Wald)

Solve the Wald task for ε = 0.05.

p(x|F)
short .197 .145 .094 .017

normal .077 .299 .145 .017
tall .001 .008 .000 .000

u-
lig
ht

lig
ht

av
g

he
av
y

p(x|M)
short .011 .005 .011 .011

normal .005 .071 .408 .038
tall .002 .014 .255 .169

u-
lig
ht

lig
ht

av
g

he
av
y

r(x) = p(x|M)/p(x|F)
short 0.056 0.034 0.117 0.647

normal 0.065 0.237 2.814 2.235
tall 2.000 1.750 ∞ ∞

u-
lig
ht

lig
ht

av
g

he
av
y

rank, and q∗(x) = {F,M, ?}
short 2 1 4 6

normal 3 5 10 9
tall 8 7 11 12

u-
lig
ht

lig
ht

av
g

he
av
y

Result: εM = 0.032, εF = 0, κM = 0.544, κF = 0.487

(r4 < µl < r5, r10 < µh <∞)

http://cmp.felk.cvut.cz
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