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»A Principled Approach to Similarity

Empirical Distribution of MNCC p for Matches (green) and Non-Matches (red)

MNCC, 5.5 window, 50 KITTI images
T T T
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® histograms of p computed from 5 x 5 correlation window p: bigger is better
® KITTI dataset

® 4.2-108 ground-truth (LiDAR) matches for p1(p) (green),
® 4.2.10% random non-matches for po(p) (red)

Obs:
® non-matches (red) may have arbitrarily large p
® matches (green) may have arbitrarily low p
® p =1 is improbable for matches
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Match Likelihood

negative log-likelihood Vi (blue) and — log Vi (red)
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® the mode is at aigiz ~ 0.9733 fora =10, B =1.5

® if we chose 8 = 1 then the mode was at p =1
® perfect similarity is ‘suspicious’ (depends on expected camera noise level)
® from now on we will work with negative log-likelihood cost

Vi (p(l, T)) = —logp1 (p(l, 7‘)) smaller is better (37)

® we should also define similarity (and negative log-likelihood Vy(p(l,7))) for non-matches
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»A Principled Approach to Matching: Formulating ‘What We Want’

® given matching M in table T, what is the likelihood of observed data D?

® data — all cost pairs (Vo, V1) in the matching table T

® matches — pairs p; = (li,rs) e M CT, i=1,...,n

® matching: partitioning matching table T to matched M and excluded E pairs

T=MUE, MNE=0

® matching cost (negative log-likelihood, smaller is better) constant number of variables in T
V(D |MT)=3 Vi(D|p)+ Y Vo(D|p)
pEM peET\M

Vi(D | p) — negative log-probability of data D at matched pixel p (37)
Vo(D | p) — ditto at unmatched pixel p —175 and —176
® matching problem
M* =arg min V(D |M,T)
MEM(T)

M(T) — the set of all matchings in table T

® symmetric: formulated over pairs, invariant to left <+ right image swap unlike in WTA
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»(cont’d) Log-Likelihood Ratio

® we need to reduce matching to a standard polynomial-complexity problem

® convert the matching cost to an ‘easier’ sum

V(D|M,T)=Y Vi(D|p)+ > Vo(D|p) + > Vo(DIp)—> Vo(D|p)

peEM peET\ M pEM pEM
=Y (M) -V n)+ 3 VoD Ip)+ > Ve(D|p)
peM pET\M peM
—L(D | p) Z Vo(D | p) = const
peT

® hence

in V(D|M)= D
argMénj\l/tr%T) VD M) = arngena)((T)Z LD p)

L(D | p) — logarithm of matched-to-unmatched likelihood ratio (bigger is better)

(38)

why this way: we want to use maximume-likelihood on the entire T’

® (38) is max-cost matching (maximum assignment) for the maximum-likelihood (ML) matching problem

® use Hungarian (Munkres) algorithm and threshold the result with 7: L(D | p) > 7 >0

or approximate the problem by sacrificing symmetry to speed and use dynamic programming
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Some Results for the Maximum-Likelihood (ML) Matching

® unlike the WTA we can efficiently control the density/accuracy tradeoff with 7 black = no match
® middle row: threshold 7 for L(D | p) set to achieve error rate of 3% (and 61% density results)

® bottom row: threshold 7 set to achieve density of 76% (and 4.3% error rate results)
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»Basic Stereoscopic Matching Models

® notice many small isolated errors in the ML matching
® Q: how to reduce the noisiness? A: a stronger model

Potential models for M (from weaker to stronger)
1. Uniqueness: Every image point matches at most once

® excludes semi-transparent objects
® used in the ML matching algorithm (but not in the WTA algorithm)

2. Monotonicity: Matched pixel ordering is preserved —181
e forall (i,5) € M,(k,))e M, k>i=1>j
Notation: (,j5) € M or j = M (i) — left-image pixel 7 matches right-image pixel j
® excludes thin objects close to the cameras
® used in 3-Label Dynamic Programming (3LDP) [SP]

W

Coherence: Objects occupy well-defined 3D volumes

concept by [Prazdny 85]

algorithms are based on image/disparity map segmentation

a popular model (segment-based, bilateral filtering and their successors)
used in Stable Segmented 3LDP [Aksoy et al. PRRS 2008]

(Piecewise) binocular continuity: The scene images continuously w/o self-occlusions

disparities do not differ much in neighboring pixels (except at object boundaries)
full binocular continuity too strong, except in some applications
piecewise binocular continuity is combined with monotonicity in 3LDP

oo o ™

non-monotonic coherent

3D Computer Vision: VII. Stereovision (p. 180/197) A R. Sara, CMP; rev. 13-Dec-2022 il



Binocular Discontinuities in Matching Table
dy,

 ——

e binocularly visible foreground points

e binocularly visible background pts violating ordering

lel IENURUREE R
... @ - depth discontinuity in right image . )
L T S o monocularly visible points

dy, critical disparity

depth discontinuity in left image

left image pixel index

invisible | :
R
|

right image pixel index
reJ

® this leads to the concept of ‘forbidden zone’

GCS
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»Formally: Uniqueness and Ordering in Matching Table T’

X-zone and F-zone ® Uniqueness Constraint:

A set of pairs M = {p;};",, p; € T is a matching iff
Vpi,pj € M : pj & X(pi).

X-zone, p; & X(p:)

® Ordering Constraint:

N Matching M is monotonic iff
F(p) Vpi,pj € M : p; & F(pi).

F-zone, p; & F(p:)

. ® ordering constraint: matched points form a monotonic set in both images

e ® ordering is a powerful constraint: in n X n table we have
monotonic matchings O(4™) < O(n!) all matchings
pi € X(pi), p; & F(pi)

® 2: how many are there maximal monotonic matchings? (e.g. 27 for n = 4; hard!)

® uniqueness constraint is a basic occlusion model

® ordering constraint is a weak continuity model and partly also an occlusion model

® monotonic matching can be found by dynamic programming
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Some Results: AppleTree

right image ML —178

3LDP w/ordering naive DP Stable Segmented 3LDP
[SP] [Cox et al. 1992] [Aksoy et al. PRRS 2008]
® 3LDP parameters «;, Ve learned on Middlebury stereo data http://vision.middlebury.edu/stereo/
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Some Results: Larch

right image ML —178

3LDP w/ordering [SP] naive DP Stable Segmented 3LDP

® naive DP: no mutual occlusion model, ignores symmetry, has no similarity distribution model, ignores 7'\ M
® but even 3LDP has errors in mutually occluded region
® Stable Segmented 3LDP: few errors in mutually occluded region since it uses a coherence model
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Algorithm Comparison

Marroquin’s Winner-Take-All (WTA —172)

® the ur-algorithm
® dense disparity map

very weak model

® O(N3) algorithm, simple but it rarely works
Maximum Likelihood Matching (ML —178)

® semi-dense disparity map
® many small isolated errors
® models basic occlusion

® O(N3log(NV)) algorithm

max-flow by cost scaling

MAP with Min-Cost Labeled Path (3LDP)

® semi-dense disparity map

® models occlusion in flat, piecewise binocularly continuous

scenes

® has ‘illusions’ if ordering does not hold

® O(N3) algorithm
Stable Segmented 3LDP
® better than 3LDP
® O(N?3log N) algorithm
® requires image segmentation

fewer errors at any given density

itself a difficult task

density [%]

98 1
951
90 1
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701

50 1

ROC curves and their average error rate bounds

pa—

——— 3LDP (3.65 + 0.26)
WTA (4.71+0.17) |[
ML (4.60 + 0.65)

——— GCS (4.29+1.47) ||

0.5 1 2 3 5 10 20
inaccuracy [%]

ROC-like curve captures the density/accuracy
tradeoff

numbers: AUC (smaller is better)
GCS is the one used in the exercises

more algorithms at
http://vision.middlebury.edu/stereo/
(good luck!)
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A Summary of This Course Highlights

® homography as a two-image model

® epipolar geometry as a two-image model
® core algorithms for 3D vision:

® simple intrinsic calibration methods

6-pt alg for camera resection and 3-pt alg for exterior orientation (calibrated resection)
7-pt alg for fundamental matrix, 5-pt alg for essential matrix

essential matrix decomposition to rotation and translation

efficient accurate triangulation

robust matching by RANSAC sampling

camera system reconstruction

efficient bundle adjustment

stereoscopic matching basics

® statistical robustness as a way to work with partially unknown information

What can we do with these tools?

® perspective image rectification
3D scene reconstruction
motion capture
visual odometry
robotic self-localization and mapping (SLAM) for navigation and motion planning
we did not cover 3D aggregation in scene maps
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Thank You
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ROC curves and their average error rate bounds
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