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» The Projective Reconstruction Theorem
® We can run an analogical procedure when the cameras remain uncalibrated. But:
Observation: Unless P; are constrained, then for any number of cameras j =1,...,k
m;; ~ P;X; = P,;H ' HX; = P} X]
N~

!
P, X

® when P; and X are both determined from correspondences (including calibrations K;), they are given up to a
common 3D homography H
(translation, rotation, scale, shear, pure perspectivity)

—
] 2
mi1 mo X X/
® when cameras are internally calibrated (K, known) then H is restricted to a similarity since it must preserve
the calibrations K [H&Z, Secs. 10.2, 10.3], [Longuet-Higgins 1981]
(translation, rotation, scale) —134 for an indirect proof
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»Reconstructing Camera System from Pairs (Correspondence-Free)

Problem: Given a set of p decomposed pairwise essential matrices Ei]’ = [Eij]XRi]' and calibration matrices K;

reconstruct the camera system P;, i =1,...,k
—81 and —151 on representing E

We construct calibrated camera pairs P;; € R%* see (17)
. K;'P; I o
Pij:[ Z_lAZ}:[A A} e R%*
® singletons i, j correspond to graph nodes k nodes
® pairs ij correspond to graph edges p edges
P1 E12 P2 PS P4
151-]- are in different coordinate systems but these are related by similarities lsini] =Py H,;; € SIM(3)
I 0| [R;; tiy| + |Ri t;
SO S I (29)
R;; ti| |0 Sij it
——
€R6:4 H;; €R%:4 €R6:4
® (29) is a system of 24p egs. in Tp + 6k unknowns p ~ (tij, Rij, 8i5), 6k ~ (R4, t;)
® cach P, = (R;, t;) appears on the RHS as many times as is the degree of node P; eg. Ps 3%
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»cont’d

Eq. (29) implies Y = and ) 2 B L
a (29) ime |:Rij Ri.y} |:R:i Rijtij + sijti; t;
® R;; and t;; can be eliminated:
Ri]‘Ri = Rj Rijti + Sijfij =t;, sy >0 (30)
® note transformations that do not change these equations assuming no error in R
1. R;— R;R, 2. t;—ot; and Sij k> 0Sij, 3. t;—t; + Rt

® the global frame is fixed, e.g. by selecting

R: =1, Ztvﬁ =0, % Z sij =1 (31)
‘ o

® rotation equations are decoupled from translation equations
® in principle, s;; could correct the sign of f:ij from essential matrix decomposition —81
but R,; cannot correct the « sign in R;; = therefore make sure all points are in front of cameras and constrain s;; > 0; —83

+ pairwise correspondences are sufficient

— suitable for well-distributed cameras only (dome-like configurations) otherwise intractable or numerically unstable
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Finding The Rotation Component in Eq. (30)

1. Poor Man’s Algorithm:
a) create a Minimum Spanning Tree of G from —133
b) propagate rotations from R; = I via R;;R; = R; from (30)

2. Rich Man'’s Algorithm:
Consider R;;R; = R, (i,5) € E(G), where R are a 3 x 3 rotation matrices
Errors per columns ¢ = 1,2,3 of R;:

c

s for all 4, j

efj = Rijl‘;: — I
Solve
3 1 i=jAk=1
arg min Z Z (e5) ef; st (r) (=30 i#jrk=1
(1,/)EE(G) c=1 0 i=jAk#Il

this is a quadratic programming problem

3. SVD-Lover’s Algorithm:
Ignore the constraints and project the solution onto rotation matrices see next
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SVD Algorithm (cont'd)

Per columns ¢ =1, 2,3 of R;:

Rir{ —r; =0, for all 4, j (32)
® fix ¢ and denote r¢ = [I“{, rs, ..., rﬂ T c-th columns of all rotation matrices stacked; r¢ € R3F
® then (32) becomes Dr¢ =0 D € R37:3F
® 3p equations for 3k unknowns — p > k in a 1-connected graph we have to fix r{ = [1,0, 0]
Rior{ —r5=0 R -I O r§
— RQSI‘; — I‘f} =0 — Dr° = 0 Ros -1 I‘(z =0
A~ . . - c
Risri —r5=0 Ris 0 11155

e must hold for any ¢

Idea: [Martinec & Pajdla CVPR 2007]
1. find the space of all r¢ € R3* that solve (32) D is sparse, use [V,E] = eigs(D’*D,3,0); (Matlab)
2. choose 3 unit orthogonal vectors in this space 3 smallest eigenvectors
3. find closest rotation matrices per cam. using SVD because ||r¢|| = 1 is necessary but insufficient

S . R; =UV', where R; = UDV "
® global world rotation is arbitrary '
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Finding The Translation Component in Eq. (30)
From (30) and (31):

& 0 < d < 3 — rank of camera center set, p — #pairs, k — #cameras
Rijti + Sq',jf:ij — tj = 07 Zt, =0, ZSU =p, Sij > 0, t;, € Rd
i=1 7
® inrank d: d-p-+d+1 indep. eqns for d - k + p unknowns — p > (1(16(177711)71 def (d, k)
Ex: Chains and circuits

construction of t; from sticks of known orientation fi]- and unknown length s;;7
p=k—1 k=p=3 k=p=4 k=p>4
o /O
N
\
\
O/O

k <2foranyd 32> d > 2: non-collinear ok 3 > d > 3: non-planar ok 3>d >k — 1: impossible

® equations insufficient for chains, trees, or when d =1 collinear cameras
® 3-connectivity implies sufficient equations for d = 3

cams. in general pos. in 3D
— s-connected graph has p > [%] edges for s > 2, hence p > [%] > Q(3,k) = % -2
® 4-connectivity implies sufficient eqns. for any k when d = 2

coplanar cams
— sincep > [2k] > Q(2,k) =2k —3

— maximal planar tringulated graphs have p = 3k — 6
and give a solution for k > 3

maximal planar triangulated graph example:
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cont’d

Linear equations in (30) and (31) can be rewritten to
Dt =0,  t=[t{, b3, ..,t], s12,. .-, 85, -]
assuming measurement errors Dt = € and d = 3, we have
t e R¥**? D e R*P3* P gparse
and

t"=argmint DDt
t,s;;>0

® this is a quadratic programming problem (mind the constraints!)

z = zeros(3%k+p,1);
t = quadprog(D.’*D, z, diag([zeros(3*k,1); -ones(p,1)]), z);

® but check the rank first!
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»Bundle Adjustment

Goal: Use a good (and expensive) error model and improve the initial estimates of all parameters

Given: Required:
1. set of 3D points {X;}_, 1. corrected 3D points {X}}?_,
2. set of cameras {P;}j_, 2. corrected cameras {P’}5_;
3. fixed tentative projections m;; Latent:
X; 1. visibility decision v;; € {0,1} per m;;

® for simplicity, X, m are considered Cartesian (not homogeneous)
® we have projection error e;;(X;,P;) = x; — m; per image feature, where x; = P;X;
e for simplicity, we will work with scalar error e;; = ||e;;||
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Robust Objective Function for Bundle Adjustment

The data model is constructed by marginalization over v;;, as in the Robust Matching Model —116

et exn =[] 1 (1= Po)prles; | XiPy) + Popoles | X, Py)

pts:i=1cams:j=1

marginalized negative log-density is (—117) 5
eiz’(xq‘,vpj)

—logp({e}|{P,X}):ZZ—log(e_ 207 +t) 3SR (XLP)

3 (X;,Py)) =vZ (X;,Py)

c=1,t=0.02

® we can use LM, e;; is the exact projection error function (not Sampson error)
® v;; is a ‘robust’ error fcn.; it is non-robust (v;; = e;;) when t =0
® p(-) is a ‘robustification function’ often found in M-estimation
® the L;; in Levenberg-Marquardt changes to vector 5 §
al/ij 1 1 1 aeij (9) T
(Lijh = = : ek ek (33)

a0, 1+ tesfj (9)/(20f) Vij (9) 40'% 00,
| S —

small for e;; > o1

—4 -2 0 2 4
X

but the LM method stays the same as before —108-109

® outliers (wrong v;;): almost no impact on ds in normal equations because the red term in (33) scales contributions to

both sums down for the particular ij
k
~STLfvi(0%) = (Z L;;Lij>d
0] 4,7
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»Sparsity in Bundle Adjustment

We have ¢ = 3p + 11k parameters: 0 = (X1,Xo,...,X,; P1,P2,..., Py) points, cameras
We will use a multi-index r =1,...,z, z=p-k. Then r correspond to point-cam pairs (i, j)
0" = argmin Zl v2(6), 05t :=0° + d, — Zl L, v (6°%) = <Zl L L.+ diag(L:Lr)> d

The block-form of L, in Levenberg-Marquardt (—108) is zero except in columns ¢ and j:

r-th error term is v = p(e?;(Xi, P;))

i J r = (i,7) blocks:
L= OomomoreT 17 O: X;,1x3
0:P;,1x11

. . 3'8 11k
[ J

: blocks: » 3
Ty _ o Pl 0 X; —X;,3x3 Ty _
L, Ly _j D """" I:[ """ 0. X;,—-P;,3x11 ZLT L, =
i Toose 0:P; —Pj, 11 x 11 =t

® “points-first-then-cameras” parameterization scheme
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»Choleski Decomposition for B. A.
The most expensive computation in B. A. is solving the normal egs:

z z
find x such that b <" — S L1, (0°) = (Z L L, + A diag(L,TLr))x 4f Ax
r=1 r=1

® A is very large approx. 3 - 10 x 3 - 10 for a small problem of 10000 points and 5 cameras

® A is sparse and symmetric, A~! is dense direct matrix inversion is prohibitive

Choleski: symmetric positive definite matrix A can be decomposed to A = LL ",
where L is lower triangular. If A is sparse then L is sparse, too.

1. decompose A = LLT L = chol(A); transforms the problemto LL'x=b

c
2. solve for x in two passes:

Lc=b c; = Li_il (bi — Z LijCj) forward substitution, ¢ = 1,..., ¢ (params)
j<i

L'x=c X; 1= Li_i1 (ci — Z Ljin) back-substitution
j>i

® Choleski decomposition is fast (does not touch zero blocks)

non-zero elements are 9p 4+ 121k 4 66pk ~ 3.4 - 106; ca. 250X fewer than all elements
® it can be computed on single elements or on entire blocks
® use profile Choleski for sparse A and diagonal pivoting for semi-definite A see above; [Triggs et al. 1999]
® )\ controls the definiteness
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Profile Choleski Decomposition is Simple

function L = pchol(A)

pA

% PCHOL profile Choleski factorization,

% L = PCHOL(A) returns lower-triangular sparse L such that A = LxL’
% for sparse square symmetric positive definite matrix A,

% especially efficient for arrowhead sparse matrices.

% (c) 2010 Radim Sara (sara@cmp.felk.cvut.cz)

[p,q]l = size(A);

if p "= q, error ’Matrix A is not square’; end
L = sparse(q,q);

F = ones(q,1);

for i=1:q

F(i) = find(A(i,:),1); % 1st non-zero on row i; we are building F gradually
for j = F(i):i-1
k = max(F(i),F(j));
a=A(®i,j) - L,k: (J-1))*L(j,k: (j-1));
L(i,j) = a/L(j,j);
end
a = A(i,i) - sum(full(L(i,F(i):(i-1)))."2);
if a < 0, error ’Matrix A is not positive definite’; end
L(i,i) = sqrt(a);
end
end
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»Gauge Freedom (kalibraéni invariance

1. The external frame is not fixed: See Projective Reconstruction Theorem —132
m;; ~ P,X; = P,H 'HX, = P/X]

2. Some representations are not minimal, e.g.

® P is 12 numbers for 11 parameters
® we may represent P in decomposed form K, R, t
® but R is 9 numbers representing the 3 parameters of rotation

As a result

® there is no unique solution
® matrix >, L, L, is singular
Solutions

1. fixing the external frame (e.g. a selected camera frame) explicitly or by constraints

2. fixing the scale (e.g. s12 = 1)
3a. either imposing constraints on projective entities

® cameras, e.g. P3,4 =1 this excludes affine cameras
® points, e.g. (X;), =1or IX;12 =1 the 2nd: can represent points at infinity
3b. or using minimal representations

® points in their Euclidean representation X; but finite points may be an unrealistic model
® rotation matrices can be represented by skew-symmetric matrices —149
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