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»The Nine Elements of a Data-Driven MH Sampler

data-driven = proposals ¢(S | C;) are derived from data

Then
1. primitives = elementary measurements
® points in line fitting
® matches in epipolar geometry or homography estimation

2. configuration = s-tuple of primitives minimal subsets necessary for parameter estimate
. the minimization will then be over a discrete set:
__._/.,._'/' S ® of point pairs in line fitting (left)
. L. ® of match 7-tuples in epipolar geometry estimation

3. a map from configuration C to parameters 8 = 6(C) by solving the minimal problem

® line parameters n from two points (x',x*) = n
® fundamental matrix F from seven matches {0, %)}, F
® homography H from four matches, etc {1 %)}, _,.,—H

4. target likelihood p(E, D | 8(C)) is represented by 7(C)

® can use log-likelihood: then it is the sum of robust errors V(e;;) given F (27)

® robustified point distance from the line @ = n
® robustified Sampson error for @ = F, etc

® posterior likelihood p(E, D | )p(0) can be used MAPSAC (m(S) includes the prior)
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»cont’d

5. parameter distribution follows the empirical distribution of the s-tuples of primitives. Since the proposal is
done via the minimal problem solver, it is ‘data-driven’,

. o oga ® pairs of points define line distribution p(n | X) (left)
e, ® random correspondence 7-tuples define epipolar geometry distribution p(F | M)

6. proposal distribution ¢(-) is just a constant(!) distribution of the s-tuples:
a) q uniform, independent ¢(S | Ct) = q(S) = (W;n)—l' then @ — min {17 ]ﬂ(gt))

b) ¢ dependent on descriptor similarity PROSAC (similar pairs are proposed more often)

c) ¢ dependent on the current configuration C} e.g. ‘not far from C}'
7. (optional) hard inlier/outlier discrimination by the threshold (28)
V(eij) < er, er = o1y/— log t?

8. local optimization from promising proposals

® can use the hard inliers or just the robust error (27) more expensive but more stable
® cannot be used to replace C} it would violate ‘detailed balance’ required for the MH scheme
9. stopping based on the probability of proposing an all-inlier configuration —126
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»Data-Driven Sampler Stopping

e The number of proposals N needed to hit the “true parameters’” = an all-inlier configuration:

this will tell us nothing about the accuracy of the result
P ... probability that the last proposal is an all-inlier

1 — P ...all previous N proposals contained outliers
e ...the fraction of inliers among primitives, ¢ < 1
s ...No. of primitives in a minimal configuration 2 in line fitting, 7 in 7-point algorithm, 4 in homography fitting,. ..
log(1 — P) ® ¢% ... proposal is all-inlier
2 log(1 — &%) ® 1 — g% ... proposal contains at least one outlier
° (1— ES)N ... N previous proposals contained an outlier =1 — P
s=7
N fors=7
L )
e || 0.8 [ 0.99 g
0.5 || 205 590 g
0.2 || 1.3-10° | 3.5-10° =
0.1 || 1.6-107 | 4.6-107

¢ (inlier fraction)

® N can be re-estimated using the current estimate for e (if there is LO, then after LO)
the quasi-posterior estimate for € is the average over all samples generated so far
® this shows we have a good reason to limit all possible matches to tentative matches only

® for ¢ — 0 we gain nothing over the standard MH-sampler stopping rule not covered in this course
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»Stripping MH Down To Get RANSAC [Fischler & Bolles 1981]

® when we are interested in the best config only...and we need fast data exploration. ..
® . .then Steps 2—4 below make no difference when waiting for the best sample configuration:
From sampling to RANSACing
1. giverGr draw a random sample S from ¢54-E5) ¢(.5) independent sampling

no use of information from C}

5. if m(S) > 7(Chest) then remember Chegt := S

® this is the ‘stupid’ Method 2 from —119

® it has a good overall exploration but slow convergence in the vicinity of a mode where C} could serve as an attractor
® getting a good accuracy configuration might take very long this way

® (possibly robust) ‘local optimization’ necessary for reasonable performance

® unlike the full sampler, it cannot use the past generated configurations to estimate any parameters

3D Computer Vision: V. Optimization for 3D Vision (p. 127/197) 9a® R. Sara, CMP; rev. 15-Nov-202



The Opposite End: The Power of MH Sampler

By marginalization in (23) we have lost constraints on M (e.g. uniqueness). One can choose a better model when not
marginalizing:
(M, F, E,D) = p(E | M,F) - p(D | M) -p(F) - P(M)
—_——— ——
reprojection error similarity prior constraints
this is a global model: decisions on m;; are no longer independent!
In the MH scheme
® one can work with full p(M,F | E, D), then configuration C' = M F computable from M
® explicit labeling m;; can be done by, e.g. sampling from
a(mij | F) ~ (1 = Po) pi(eij | F), Popolei; | F))
when P(M) uniform then always accepted, a =1 ® derive
® we can compute the posterior probability of each match p(m;;) by histogramming m;; from the sequence {C;}

® local optimization can then use explicit inliers and p(m;;)

® error can be estimated for the elements of F from the sequence {C;} does not work in RANSAC
® |arge error indicates problem degeneracy this is not directly available in RANSAC
® good conditioning is not a requirement we work with the entire distribution p(F')
® one can find the most probable number of models (epipolar geometries, homographies, .. .) by reversible jump MCMC

if there are multiple models explaning data, RANSAC will return one of them randomly
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Example: MH Sampling for a More Complex Problem

Task: Find two vanishing points from line segments detected in input image. Principal point is known, square pixel.

® primitives = line segments

iter: 10 (ace TOT=0.0%, HMC=Nal% ) Eave = 14.597

® |atent variables

1. each line has a vanishing point label \; € {0, 1,2}, 0 = outlier
2. ‘mother line’ parameters 6, (they pass through their vanishing points)

® explicit variables

1. two unknown vanishing points vy, va
® marginal proposals (v; fixed, v; proposed)
® minimal configuration s = 2

»

IM'
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click for video

simplifications

® vanishing points restricted to the set of all pairwise

segment intersections arg min V(vhy27 A,01)
® mother lines fixed by segment centroid, then 6, vi.v2 A0
uniquely given by \;, and the configuration is ® blue lines point away from the vanishing points
C = {v1,va, A} ® proposal acceptance: 20%

® ca. 150 iterations to a good solution
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Module VI

3D Structure and Camera Motion

@ Reconstructing Camera System: From Triples and from Pairs

@Bundle Adjustment

covered by
[1] [H&Z] Secs: 9.5.3, 10.1, 10.2, 10.3, 12.1, 12.2, 12.4, 12.5, 18.1

[2] Triggs, B. et al. Bundle Adjustment—A Modern Synthesis. In Proc ICCV Workshop on Vision Algorithms.
Springer-Verlag. pp. 298-372, 1999.

additional references

@ D. Martinec and T. Pajdla. Robust Rotation and Translation Estimation in Multiview Reconstruction. In Proc CVPR, 2007

@ M. I. A. Lourakis and A. A. Argyros. SBA: A Software Package for Generic Sparse Bundle Adjustment. ACM Trans Math Software
36(1):1-30, 20009.
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»Reconstructing Camera System by Gluing Camera Triples

Given: Calibration matrices K; and tentative correspondences per camera triples.

Initialization
1. initialize camera cluster C with a pair P1, P»
2. find essential matrix E12 and matches Mi2 by the
5-point algorithm —88
3. construct camera pair
P =K [I O], P =Ko [R t}
4. triangulate {X;} per match
from Mo —106

5. initialize point cloud X with {X;} satisfying
chirality constraint z; > 0 and apical angle
constraint |o;| > ar

Attaching camera P; ¢ C
1. select points X; from X' that have matches to P;

X;

. estimate P; using X;, RANSAC with the 3-pt alg. (P3P), projection errors e;; in X; —66
. reconstruct 3D points from all tentative matches from P; to all P, [ # k that are not in X

. add Pj to C
. perform bundle adjustment on & and C

2

3

4. filter them by the chirality and apical angle constraints and add them to X
5

6

coming next —139
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Thank You



N (proposals)
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€ (inlier fraction)
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