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Algebraic Error vs Reprojection Error

® algebraic error (¢ — camera index, (u®, v®) — image coordinates) from SVD —91

S(X)=of = 22; [(uC(pgfx— ®) %)+ (v P X - (pg)TX)z]
c=1

® reprojection error 2 T 2 T 2
25y e (1) X e (P3) X
X = ¥~ momx ) T\ T oo
= (p§)TX (P TX
algebraic error zero < reprojection error zero o4 = 0 = non-trivial null space
epipolar constraint satisfied = equivalent results
in general: minimizing algebraic error is cheap but it gives inferior results
minimizing reprojection error is expensive but it gives good results
the midpoint of the common perpendicular to both optical rays gives about 50% greater error in 3D
the golden standard method — deferred to —106

Ex ® forward camera motion
G G ® error f/50 in image 2, orthogonal to epipolar plane
X — noiseless ground truth position
X, — reprojection error minimizer
X, — algebraic error minimizer

m — measurement (mp with noise in v?)

Ci G m
my m. 3
1 * my,
P LT p-pepeppayupups Py QISR -
e mp=m € my
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»We Have Added to The ZOO (cont’d from —69)

problem given unknown | slide
camera resection 6 world—img correspondences {(X;, mi)}?:l P 62
exterior orientation | K, 3 world—img correspondences {(X;, mi)}f:1 R, t 66
relative pointcloud | 3 world-world correspondences {(Xi7 Yi)}?:l R, t 70
orientation

fundamental matrix | 7 img—img correspondences {(m;, mﬁ;)}zzl F 84
relative camera K, 5 img—img correspondences {(m, mg)}le R, t 88
orientation

triangulation P, P, 1 img—img correspondence (m;, m;) X 89

A bigger ZOO at http://aag.ciirc.cvut.cz/minimal/
calibrated problems

® have fewer degenerate configurations
® can do with fewer points (good for geometry proposal generators —119)

® algebraic error optimization (SVD) makes sense in camera resection and triangulation only
® but it is not the best method; we will now focus on ‘optimizing optimally’
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Module V

Optimization for 3D Vision

@ The Concept of Error for Epipolar Geometry
@ The Golden Standard for Triangulation
@® Levenberg-Marquardt's lterative Optimization
@ Optimizing Fundamental Matrix
@ The Correspondence Problem
@ Optimization by Random Sampling
covered by
[1] [H&Z] Secs: 11.4, 11.6, 4.7
[2] Fischler, M.A. and Bolles, R.C . Random Sample Consensus: A Paradigm for Model Fitting with Applications
to Image Analysis and Automated Cartography. Communications of the ACM 24(6):381-395, 1981

additional references

P. D. Sampson. Fitting conic sections to ‘very scattered’ data: An iterative refinement of the Bookstein algorithm. Computer Vision,
Graphics, and Image Processing, 18:97-108, 1982

@ O. Chum, J. Matas, and J. Kittler. Locally optimized RANSAC. In Proc DAGM, LNCS 2781:236-243. Springer-Verlag, 2003.

@ O. Chum, T. Werner, and J. Matas. Epipolar geometry estimation via RANSAC benefits from the oriented epipolar constraint. In Proc
ICPR, vol 1:112-115, 2004.
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» The Concept of Error for Epipolar Geometry

Background problems: (1) Given at least 8 matched points x; <> y; in a general position, estimate the most ‘likely’
fundamental matrix F; (2) given F triangulate 3D point from z; <> y;.

xiz(u%,v}), yi:(uf,vf), i=1,2,...,k, k>8

image 1 image 2

® detected points (measurements) x;, y;

® we introduce matches Z; = (x;,y;) = (uf,vi,u?,v?) € R*; and the set Z = {Z,—}le

e corrected points @, Ji; Zi = (Xi, %) = (4}, 0}, 42,02); Z = {Zi}le are correspondences
® correspondences satisfy the epipolar geometry exactly §:’,T Fx,=0,i=1,...,k

® small correction is more probable

® let e;(-) be the ‘reprojection error’ (vector) per match i,

ei(zi,yi | #45,0:, F) = {Xi B )ft] =ei(Z; | Zi,F) = Z; — Z:(F)
Yi—Yi (15)

def ~ a 5
le:()I* = €7 () = lixi = %ll* + lly; = 9:01* = 1Zi — Z:(F)]*

3D Computer Vision: V. Optimization for 3D Vision (p. 96/197) ¥a® R. S4ara, CMP; rev. 1-Nov-2022 [Zill



»cont’d

® the total reprojection error (of all data) then is

k k
L(Z|Z2,F) =) el(zi,yi | 21,50, F) = ei(Zi|Zi,F)
=1 =1
® and the optimization problem is
(Z*,F*)=argminL(Z | Z,F) st. rankF =2,y Fx =0, (x,y,) € Z; (16)

F,Z E

Three possible approaches
® they differ in how the correspondences ;, §; are obtained:
1. direct optimization of reprojection error over all variables Z, F —98
2. Sampson optimal correction = partial correction of Z; towards Z; used in an iterative minimization over F —100

3. removing &;, y; altogether = marginalization of L(Z, Z | F) over 7 followed by minimization over F
not covered, the marginalization is difficult
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Method 1: Reprojection Error Optimization: |dea

® we need to encode the constraints 3}1 Fx, =0, rankF =2
® idea: reconstruct 3D point via equivalent projection matrices and use reprojection error

® the equivalent projection matrices are see [H&Z,Sec. 9.5] for complete characterization

Pi=[1 0], P:=[[e],F+ee e (17)

® H3; 2pt: Given rank-2 matrix F', let e1, e> be the right and left nullspace basis vectors of F, respectively. Verify that such F is a
fundamental matrix of Py, Py from (17).

Hints:

(1) consider x, = P1X; and ¥, =P2X;

(2) A is skew symmetric iff x ' Ax = 0 for all vectors x.
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(cont’'d) Reprojection Error Optimization: Algorithm

1. compute F(© by the 7-point algorithm —84; construct camera Pgo) from F© using (17)

2. triangulate 3D points XEO) from matches (x;,y;) foralli=1,...,k —89
3. starting from Péo), Xio,l minimize the reprojection error (15)
k
(X1, FY) =arg min > e}(Z; | Zi(X;, P(F)))
F, X1k 5

where

Z; = (Xi,y;) (Cartesian), X;~ P1Xi, Vi~ P, (F) X, (homogeneous)

® non-linear, non-convex problem

® solves F estimation and triangulation of all k£ points jointly

® the solver would be quite slow

® 3k 4 7 parameters to be found: latent: X, for all i (correspondences!), non-latent: F

® we need minimal representations for X; and F —151 or introduce constraints
® there are other pitfalls; this is essentially bundle adjustment; we will return to this later —139
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»Method 2: First-Order Error Approximation

An elegant method for solving problems like (16):

® we will get rid of the latent parameters X needed for obtaining the correction
[H&Z, p. 287], [Sampson 1982]
® we will recycle the algebraic error € = y " F x from —84

® consider matches Z;, correspondences Z:, and reprojection error e; = ||Z; — Z,;||2
* correspondences satisfy ;| F %; =0, % = (a',0",1), 9 = (a% 0% 1)
® this is a manifold Vr € R*: a set of points 7= (G, o, 4%, 9%) consistent with F

® algebraic error vanishes for Z;: 0= ez(Z,) = }:Q-TF Xi

Sampson’s idea: Linearize the algebraic error €(Z) at Z; (where it is non-zero) and
evaluate the resulting linear function at Z; (where it is zero). The zero-crossing
replaces Vg by a linear manifold £. The point on Vg closest to Z; is replaced by the
closest point on L.
0= ei(Z,,;) ~ Ei(zi) + M (Z, — Zi)
0Z;
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»Sampson’s Approximation of Reprojection Error

linearize €(Z) at match Z;, evaluate it at correspondence Z;
0ei(Z;)
0Z;

Ji(Zi)  ei(Z;,Z;)

ei(Zi) + (Zi — Zs) o €i(Zi) +Ji(Z:) ei(Zi, Z;) = ei(Z;) =0
S—— S———

given wanted

goal: compute function e;(-) from &;(-), where e;(-) is the distance of Z; from Z;
we have a linear underconstrained equation for e;(-) eg. €, €R e €R?

we look for a minimal e;(-) per match ¢

ei(r)" = afgmg lei(-)||*> subject to &;(-) +Ji(-)ei(-) =0

which has a closed-form solution note that J;(-) is not invertible! ® P1; 1pt: derive e} ()
e;(') = _J«LT(JiJ;r)_lé‘i(') pseudo-inverse (18)
T Ty—
e ()" = & ()JI:di) ™ Meil)
this maps &;(+) to an estimate of e;(-) per correspondence
we often do not need e;, just ||e;|? exception: triangulation —106

the unknown parameters F are inside: e; = e;(F), €; = &;(F), J;, = J:i(F)
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»Example: Fitting A Circle To Scattered Points

Problem: Fit an origin-centered circle C: ||x||> — > = 0 to a set of 2D points Z = {x;}}_;

1. consider radial error as the ‘algebraic error’ e(x) = ||x|* — r* ‘arbitrary’ choice
2. linearize it at x we are dropping i in g;, e; etc for clarity
. Oe(x) . T4 2 2y def N
e ~e+ 2 (x = o (2 4 ) en®)
——
J(x)=2xT e(&,x)
2 — 0 i a line wi . - 2 4 x> .
er(X) =0 is a line with normal Tl and intercept S not tangent to C, outside!

3. using (18), express error approximation e as

IR %

le*|* =" (337)"
Affx|J>

4. fit circle

1
; - (x> =% (1 1 :
en1(x)=0 r argmmz 4% |2 I Z [[x: |2

® this example results in a convex quadratic optimization problem

e(x) =0

Vo ® note that the algebraic error minimizer is different:

/T‘qﬁ):o argmmz s 1> — < Z||xl||2>
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Circle Fitting: Some Results

medium radial noise big radial noise medium isotropic noise big isotropic noise

opt: 1.8, Smp: 1.9, dir: 2.3 1.8,2.0,22 1.6, 2.0, 2.4

mean ranks over 10000 random trials with & = 32 samples; smaller is better

solid green — ground truth optimal estimator for isotropic error (black, dashed):

solid red — Sampson error € minimizer 3 F 3 2 1k
solid blue — direct algebraic radial error € minimizer TR — x| + — X - — x; |2
ct algeb ertor & 1 2 Il (MZII 1||> o 2 Il
dashed black — optimal estimator for isotropic error i=1 i=1 =1

which method is better?
® error should model noise, radial noise and isotropic noise behave differently
® ground truth: Normally distributed isotropic error, Gamma-distributed radial error

® no matter how corrected, the algebraic error minimizer is not an unbiased parameter estimator
Cramér-Rao bound tells us how close one can get with unbiased estimator and given k

3D Computer Vision: V. Optimization for 3D Vision (p. 103/197) Ya® R. Sara, CMP; rev. 1-Nov-2022 [Zill



Discussion: On The Art of Probabilistic Model Design. ..

® a few probabilistic models for fitting zero-centered circle C' of radius r to points in R2

marginalized over C' orthogonal deviation from C' Sampson approximation
3
X
E + N(0,0°T) . T, - N(0,0°1)
s
=t
OJ
w
T H
o H
o
5
aC
°
<
o
£
]
n
€
S
°
[=
aC
e
—
© _m2 2 2 (x;
= N 1 o (||x2|\62T) 1 1 (THXH ) " o rH;cH 1 - e 2(:2,1")
N o3 o 2 2\ "o o3
% a+/(2m)37 ||x|| 27T (1) (B3] 4 rav/(2m)3
e mode inside the circle e peak at the center e mode at the circle
e models the inside well e unusable for small radii e hole at the center
e tends to normal distribution e tends to Dirac distribution e tends to normal distribution
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»Sampson Error for Fundamental Matrix Manifold

The epipolar algebraic error is assuming finite points
EZ(F):X;I—F)Slﬂ )Si:(u%7vgv 1)7 Xi:(u?,’l]?7 1)5 EiG]R
(Fl)T 1 0 O
Let F=[F; F. Fs] (per columns) = [(F?)"| (per rows), S= , then
3T 0 1 0
(F°)
Sampson
_ O¢; (F) 8‘5i(F) aai(F) 8‘5i(F) 1,4 derivatives over
Ji(F) = [ oul 7 vl ' au2 1 92 Ji €R point coordinates
SFTy, ]’
= [P0y )Ty, (F) T, (7)) = [ Y]
I (F)ei(F) 4
e(F)=—""~"—~+ e;(F) eR Sampson error vector
' [19:(F)]1? '
TFx;
e (F) = def [le:(F)|| = ci(F) Y % e (F)eR scalar Sampson error

133 (F)l \/||SF>5iH2 + |ISFTyi2

generalization for infinite points is easy
Sampson error ‘normalizes’ the algebraic error
automatically copes with multiplicative factors F +— AF

actual optimization not yet covered —110
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»Back to Triangulation: The Golden Standard Method

Idea:

2. correct the measurement by the linear estimate of the correction vector

1
1
2

[SE SIS~
N

Given Py, P2 and a correspondence z <+ y, look for 3D point X projecting to « and y —89
L. if not given, compute F from Py, P2, eg. F = (Q; Q") "[a; — (Q,Q; "y, —77
—101

ul ul . (F1)Ty

O 5 IS O ol y Fx (F2)'y

u?| g u?l [SFx|? +[ISFTy|]> |[(F})Tx

v v (F2)T>S
—90

3. use the SVD triangulation algorithm with numerical conditioning

Ex (cont'd from —93):
(&)

G

— noiseless ground truth position
— reprojection error minimizer
Xs — Sampson-corrected algebraic error minimizer
X, — algebraic error minimizer
m — measurement (m7 with noise in v2)

_\71

C
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»Back to Fundamental Matrix Estimation

Goal: Given a set X = {(x;,¥:) k_| of k> 7 inlier correspondences, compute a statistically efficient estimate for
fundamental matrix F.

What we have so far
® 7-point algorithm for F (5-point algorithm for E) —84
® definition of Sampson error per correspondence e;(F | z;,y;) —105

® triangulation requiring an optimal F

What we need

® correspondence recognition see later —112
® an optimization algorithm for many (k >> 7) correspondences comes next
- 2
* .
F :argmb}n;ei(F|X)

® the 7-point estimate is a good starting point Fo
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Levenberg-Marquardt (LM) Iterative Optimization in a Nutshell
Consider error function e;(0) = f(xi;,y;,0) € R™, with x;,y; given, 8 € R? unknown
k
Our goal: 0" = arg min e (0)|?
p ; e ()]
Idea 1 (Gauss-Newton approximation): proceed iteratively for s =0,1,2,...
k
s+1._ ps X = . . s 2
0°" :=0°+d,, where d, argn}jln;Hel(G +d)||
ei(es + d) ~ ei(BS) + L; d,
(L')~ _ 8(ei(0))j
i)jl = 8(9)1 )

Then the solution to Problem (19) is a set of ‘normal eqs’

k k
—> Liei(6°) = (ZLZL) d.,
i=1 i=1

eCRY:1 LER%a

L; ¢ R™1 typically a long matrix, m < ¢

® d; can be solved for by Gaussian elimination using Choleski decomposition of L

L symmetric PSD = use Choleski, almost 2 faster than Gauss-Seidel, see bundle adjustment
® beware of rank defficiency in L when k is small
® such updates do not lead to stable convergence — ideas of Levenberg and Marquardt

0 =F, q=9, m =1 for f.m. estimation

(19)

—142
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LM (cont'd)

Idea 2 (Levenberg): replace 3", L/ L; with 3°. L/ L; + A for some damping factor A > 0
Idea 3 (Marquardt): replace AI with A", diag(L, L;) to adapt to local curvature:

k k
—Y Liei(6°) = <Z(LZTLZ- + Adiag(LZLi))> d,

i=1

Idea 4 (Marquardt): adaptive A small A — Gauss-Newton, large A — gradient descend
1. choose A ~ 1072 and compute d,
2.if Y, [lei(8° +ds)||> < 32, [lei(8%)||® then accept ds and set A :=\/10, s:=s+ 1 better: Armijo's rule
3. otherwise set A := 10\ and recompute d;

® sometimes different constants are needed for the 10 and 10~3

® note that L; € R™ 9 (long matrix) but each contribution L:Li is a square singular ¢ X g matrix (always singular for
k< q)

® )\ helps avoid the consequences of gauge freedom —144
® the error function can be made robust to outliers —113

® we have approximated the least squares Hessian by ignoring second derivatives of the error function (Gauss-Newton
approximation) See [Triggs et al. 1999, Sec. 4.3]

® modern variants of LM are Trust Region methods
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LM with Sampson Error for Fundamental Matrix Estimation

Sampson (derived by linearization over point coordinates ut, vt u?, v2)

e;(F) = H?” = ¥ T X where S = {(1) (1) 8}
A JIsF|? + |SF Ty 2
LM (by linearization over parameters F)
dei(F) 1 ( 2¢:(F) ) T 2e:(F) ot ) |
L; = === |y — SFx; | x; +yi| X — SF y: 21
OF 23] { A A Y EARRE )

® L; in (21) is a 3 x 3 matrix, must be reshaped to dimension-9 vector vec(L;) to be used in LM

® x; and y; in Sampson error are normalized to unit homogeneous coordinate (21) relies on this

® reinforce rank F = 2 after each LM update to stay on the fundamental matrix manifold and ||F|| = 1 to avoid gauge
freedom by SVD —111

® LM linearization could be done by numerical differentiation (we can afford it, we have a small dimension here)
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Thank You
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