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Degenerate (Critical) Configurations for Exterior Orientation

X, ,
o----- 2l .
e o no solution
)\(‘0-____—0;( 1. C cocyclic with (X1, X2, X3) camera sees points on a line
1 A2
. unstable solution
e O | ® center of projection C' located on the orthogonal circular cylinder with base
k. A circumscribing the three points X;
! E unstable: a small change of X results in a large change of
DX ‘ can be detected by error propagation
| e !
! ) degenerate
Te-___-®
Xy Xo ® camera (' is coplanar with points (X1, X2, X3) but is not on the
circumscribed circle of (X1, X2, X3) camera sees points on a line
® additional critical configurations depend on the quadratic equations solver [Haralick et al. [JCV 1994]
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»Populating A Little ZOO of Minimal Geometric Problems in CV

problem given unknown | slide
. . 6
camera resection | 6 world-image correspondences { (X, ms)},_, P —62
exterior orientation | K, 3 world—image correspondences {(Xi, mi)}iﬂ R, C —66
. . . 3
relative orientation | 3 world-world correspondences { (X, Yi)}ii1 R, t —70
® camera resection and exterior orientation are similar problems in a sense:
® we do resectioning when our camera is uncalibrated
® we do orientation when our camera is calibrated
® relative orientation involves no camera (see next) it is a recurring problem in 3D vision

® more problems to come

3D Computer Vision: III. Computing with a Single Camera (p. 69/197) A R. Sara, CMP; rev. 18-Oct-2022 [Eill



» The Relative Orientation Problem

Problem: Given point triples (X1, X2, X3) and (Y1, Y2,Y3) in a general position in R?® such that the
correspondence X; <> Y; is known, determine the relative orientation (R, t) that maps X; to Y, i.e.

Y, =RX;+t, i=1,2,3.
Applies to:
® 3D scanners

® merging partial reconstructions from different viewpoints

® generalization of the last step of P3P

Obs: Let the centroid be X = %ZZ X; and analogically for Y. Then
Y =RX +t.

Therefore
Z; ¥ (v, - ¥V)=R(X; - X) ¥ rwW;,

If all dot products are equal, ZZTZ]' = WiTWj fori,j =1,2,3, we have
-1
R* = [Wl W, Wg} [Zl Zo Zg}
Poor man'’s solver:
® normalize W3, Z; to unit length, use the above formula, and then find the closest rotation matrix

® but this is equivalent to a non-optimal objective it ignores errors in vector lengths
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An Optimal Algorithm for Relative Orientation

We setup a minimization problem

3
R = argmr%nz |Zi —RW,||®> st. RTR=1I detR=1
i=1
. . T T
argmp{nz 1Z; - RW,||? = argmﬁnz (sz”2 —2Z; RW, + ||WzH2) == argm&xzzi RW;
K2 2 1

Obs 1: Let A: B =3, s ai;b;; be the dot-product (Frobenius inner product) over real matrices. Then

A:B=B:A=tr(A"B) =vec(A)" vec(B) =a-b

Obs 2: (cyclic property for matrix trace)
tr(ABC) = tr(CAB)
Obs 3: (Z;, W; are vectors)

Z]RW; = tr(Z] RW;) Z tr(W, 2] R) 2 (Z;W]) : R=R: (Z;W,)

Let there be SVD of
S zw] “M=UDV'
7

Then
R:M=R:(UDV)Zu®RTUDVT)Zu(VTRTUD) 2 (UTRV): D

3D Computer Vision: III. Computing with a Single Camera (p. 71/197) 9a¢ R. Sara, CMP; rev. 18-Oct-2022 [Eill



cont'd: The Algorithm

We are solving
R" =arg mlgxz Z; RW; = arg max (UTRV) :D
3
A particular solution is found as follows:

® UTRV must be (1) orthogonal, and closest to: (2) diagonal and (3) positive definite D

® Since U, V are orthogonal matrices then the solution to the problem is among R* = USV ", where S is
diagonal and orthogonal, i.e. one of

+diag(1,1,1), =+£diag(l,—-1,-1), =+diag(-1,1,—-1), =+diag(—1,-1,1)
® UV is not necessarily positive definite
® We choose S so that (R*)"R* =1

Alg:
1. Compute matrix M =3, Z; W, .
2. Compute SVD M =UDV .
3. Compute all Ry = US, VT that give R/ Ry =1
4. Compute t, =Y — RpX.

® The algorithm can be used for more than 3 points
® Triple pairs can be pre-filtered based on motion invariants (lengths, angles)
® Can be used for the last step of the exterior orientation (P3P) problem —66
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Module IV
Computing with a Camera Pair

@® Camera Motions Inducing Epipolar Geometry, Fundamental and Essential Matrices
@®Estimating Fundamental Matrix from 7 Correspondences

®Estimating Essential Matrix from 5 Correspondences

@ Triangulation: 3D Point Position from a Pair of Corresponding Points

covered by
[1] [H&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1
[2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630-633

additional references

@ H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293(5828):133-135, 1981.
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»Geometric Model of a Camera Stereo Pair

P.=[Q q]=Ki[Ri t|=KR;[I -C;] i=12 —31
Epipolar geometry:
® brings constraints necessary for inter-image matching

® its parametric form encapsulates information about the relative pose of two cameras

Description

® baseline b joins projection centers Cy, Co
b=Cy; -C;
® epipole e; € m; is the image of C;:
e1 ~P1Cy, e ~P2C

® [; € m; is the image of optical ray d;, j # i and also the
epipolar plane

e=(C2,X,Ch)

® [; is the epipolar line (‘epipolar’) in image 7; induced by m; in

two-camera setup Image 7;

Epipolar constraint relates m; and mo: corresponding da2, b, di are coplanar a necessary condition —87
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Epipolar Geometry Example: Forward Motion

image 1 image 2
click on the image to see their IDs

® red: correspondences
® green: epipolar line pairs per correspondence

Epipole is the image of the other camera’s center.

How high was the camera above the floor?

movement Il

same ID in both images
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»Cross Products and Maps by Skew-Symmetric 3 x 3 Matrices

e There is an equivalence b x m = [b], m, where [b], is a 3 x 3 skew-symmetric matrix

0 —bs b2 b1
[b], = | b3 0 b1, assuming b = [bs
—b2 b1 0 b3
Some properties
T .
1. [b], = —[b], the general antisymmetry property
2. A is skew-symmetric iff x' Ax = 0 for all x skew-sym mtx generalizes cross products
3
3. [b]5 = —b]|* - [b],
4. |[bl, |, = V2| Frobenius norm (J|A[|r = \/tr(ATA) = /5, ;lai; )
5. rank [b],, =2 iff ||b|| >0 check minors of [b],
6. [b],b=0
7. eigenvalues of [b], are (0, A, —))
8. for any 3 x 3 regular B: BT [Bz] B =detB[z], follows from the factoring on —39
9. in particular: if RR" =1 then [Rb], =R[b] R"

® note that if Ry is rotation about b then R;b = b

® note [b], is not a homography; it is not a rotation matrix it is the logarithm of a rotation mtx
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»Expressing Epipolar Constraint Algebraically

P, = [QZ qi} =K; [RZ ti] ; 1= 1,2
defs:
R3; - relative camera rotation, Ra; = RQR]—
to1 — relative camera translation, to; = to — Rojt; = —Rob —74

b - baseline vector (world coordinate system)
remember: C = —Q 'q=-R"t —33 and 35

0=d; p, ~
~~

— T T —-TAT T —-TAT

(Q:'me)" Qih=m; Q;'Q/(erxm)=m; (Q; Q[ [er],) m
———— =~ —_— —

normal of optical ray  optical plane

image of € in w2 fundamental matrix F

Epipolar constraint mj Fm; =0

is a point-line incidence constraint
® point my is incident on epipolar line 1o ~ Fm, ® Feg=F'e;=0 (non-trivially)
® point my is incident on epipolar linel; ~ F"'mo ® all epipolars meet at the epipole

e1~Q,Co+q, =Q,C—Q,C =K Rib=-K;RiRJ to; = -K Ry t2;

1

F=Q,'Q [el], =Q;'Qf [-KiRsta], =

= K;T[_tm]meK;l fundamental
E =[—t2] Ro1 =

[R2b], Ro1 "L Ry, [R1b],

T .
= Roi[—Roita1],  essential
—— ——
baseline in Cam 2 baseline in Cam 1
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» The Structure and the Key Properties of the Fundamental Matrix

left epipole right epipole
—1\—T -T T —76 -T -1
F= ( Q2Q1 ) [el]x = K2 R21K1 [el]x =~ [Heel]XHe = K2 [-th}XRgl Kl
N—— —_———
epipolar homography H H;T essential matrix E
1. E captures relative camera pose only [Longuet-Higgins 1981]

(the change of the world coordinate system does not change E)

R t
Ri ] =[Ri t]- [0T 1} = [RiR Rit+1t:],
then
Ry = RyR; " = =Ra thy = th — Rjyt] = = tos

2. the translation length t2; is lost since E is homogeneous

3. F maps points to lines and it is not a homography

4. H. maps epipoles to epipoles, H. " epipolar lines to epipolar lines: I, ~ H; Tl

another epipolar line map: b ~ Fle1], 1 = F(e1 x I1)
® proof by point/line ‘transmutation’ (left)
® point e; does not lie on line e (dashed): 91'—(;1 #0

® Flei], is not a homography, unlike HZ T but it does the same job for
epipolar line mapping

® no need to decompose F' to obtain H,
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»Summary: Relations and Mappings Involving Fundamental Matrix

0=m; Fmy

er ~ null(F), e ~null(F")
er~H;'e e~ Heer

L ~F m I ~ Fmy

L ~H L L~H. "l
L =F'[e], L L~ Flei], L

® F[e1], maps epipolar lines to epipolar lines but it is not a
homography

°* H. = Q2Q1_1 is the epipolar homography—78
H;T maps epipolar lines to epipolar lines, where
He = Q,Q; ' = KoRa K+

you have seen this —59

H; or F e«
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