
3D Computer Vision
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Degenerate (Critical) Configurations for Exterior Orientation

X1X3 X2C no solution

1. C cocyclic with (X1, X2, X3) camera sees points on a line

X1X3 X2
C unstable solution

• center of projection C located on the orthogonal circular cylinder with base
circumscribing the three points Xi

unstable: a small change of Xi results in a large change of C
can be detected by error propagation

degenerate

• camera C is coplanar with points (X1, X2, X3) but is not on the
circumscribed circle of (X1, X2, X3) camera sees points on a line

• additional critical configurations depend on the quadratic equations solver [Haralick et al. IJCV 1994]
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▶Populating A Little ZOO of Minimal Geometric Problems in CV

problem given unknown slide

camera resection 6 world–image correspondences
{
(Xi, mi)

}6

i=1
P →62

exterior orientation K, 3 world–image correspondences
{
(Xi, mi)

}3

i=1
R, C →66

relative orientation 3 world-world correspondences
{
(Xi, Yi)

}3

i=1
R, t →70

• camera resection and exterior orientation are similar problems in a sense:
• we do resectioning when our camera is uncalibrated
• we do orientation when our camera is calibrated

• relative orientation involves no camera (see next) it is a recurring problem in 3D vision

• more problems to come
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▶The Relative Orientation Problem

Problem: Given point triples (X1, X2, X3) and (Y1, Y2, Y3) in a general position in R3 such that the
correspondence Xi ↔ Yi is known, determine the relative orientation (R, t) that maps Xi to Yi, i.e.

Yi = RXi + t, i = 1, 2, 3 .

Applies to:

• 3D scanners

• merging partial reconstructions from different viewpoints

• generalization of the last step of P3P

Obs: Let the centroid be X̄ = 1
3

∑
i Xi and analogically for Ȳ. Then

Ȳ = RX̄+ t.

Therefore

Zi
def
= (Yi − Ȳ) = R(Xi − X̄)

def
= RWi

If all dot products are equal, Z⊤
i Zj = W⊤

i Wj for i, j = 1, 2, 3, we have

R∗ =
[
W1 W2 W3

]−1 [
Z1 Z2 Z3

]
Poor man’s solver:

• normalize Wi, Zi to unit length, use the above formula, and then find the closest rotation matrix

• but this is equivalent to a non-optimal objective it ignores errors in vector lengths
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An Optimal Algorithm for Relative Orientation

We setup a minimization problem

R∗ = argmin
R

3∑
i=1

∥Zi −RWi∥2 s.t. R⊤R = I, detR = 1

argmin
R

∑
i

∥Zi −RWi∥2 = argmin
R

∑
i

(
∥Zi∥2 − 2Z⊤

i RWi + ∥Wi∥2
)
= · · · = argmax

R

∑
i

Z⊤
i RWi

Obs 1: Let A : B =
∑

i,j aijbij be the dot-product (Frobenius inner product) over real matrices. Then

A : B = B : A = tr(A⊤B) = vec(A)⊤ vec(B) = a · b

Obs 2: (cyclic property for matrix trace)
tr(ABC) = tr(CAB)

Obs 3: (Zi, Wi are vectors)

Z⊤
i RWi = tr(Z⊤

i RWi)
O2
= tr(WiZ

⊤
i R)

O1
= (ZiW

⊤
i ) : R = R : (ZiW

⊤
i )

Let there be SVD of ∑
i

ZiW
⊤
i

def
= M = UDV⊤

Then

R : M = R : (UDV⊤)
O1
= tr(R⊤UDV⊤)

O2
= tr(V⊤R⊤UD)

O1
= (U⊤RV) : D
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cont’d: The Algorithm

We are solving

R∗ = argmax
R

∑
i

Z⊤
i RWi = argmax

R

(
U⊤RV

)
: D

A particular solution is found as follows:
• U⊤RV must be (1) orthogonal, and closest to: (2) diagonal and (3) positive definite D
• Since U, V are orthogonal matrices then the solution to the problem is among R∗ = USV⊤, where S is

diagonal and orthogonal, i.e. one of

± diag(1, 1, 1), ±diag(1,−1,−1), ±diag(−1, 1,−1), ±diag(−1,−1, 1)

• U⊤V is not necessarily positive definite
• We choose S so that (R∗)⊤R∗ = I

Alg:
1. Compute matrix M =

∑
i ZiW

⊤
i .

2. Compute SVD M = UDV⊤.

3. Compute all Rk = USkV
⊤ that give R⊤

k Rk = I.

4. Compute tk = Ȳ −RkX̄.

• The algorithm can be used for more than 3 points
• Triple pairs can be pre-filtered based on motion invariants (lengths, angles)
• Can be used for the last step of the exterior orientation (P3P) problem →66
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Module IV

Computing with a Camera Pair

4.1Camera Motions Inducing Epipolar Geometry, Fundamental and Essential Matrices

4.2Estimating Fundamental Matrix from 7 Correspondences

4.3Estimating Essential Matrix from 5 Correspondences

4.4Triangulation: 3D Point Position from a Pair of Corresponding Points

covered by

[1] [H&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1

[2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630–633

additional references

H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293(5828):133–135, 1981.
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▶Geometric Model of a Camera Stereo Pair

Pi =
[
Qi qi

]
= Ki

[
Ri ti

]
= KiRi

[
I −Ci

]
i = 1, 2 →31

Epipolar geometry:

• brings constraints necessary for inter-image matching

• its parametric form encapsulates information about the relative pose of two cameras" �2�1 d2d1
e2e1m1

X
C2l1 m2C1 l2b

two-camera setup

Description

• baseline b joins projection centers C1, C2

b = C2 −C1

• epipole ei ∈ πi is the image of Cj :

e1 ≃ P1C2, e2 ≃ P2C1

• li ∈ πi is the image of optical ray dj , j ̸= i and also the
epipolar plane

ε = (C2, X,C1)

• lj is the epipolar line (‘epipolar’) in image πj induced by mi in
image πi

Epipolar constraint relates m1 and m2: corresponding d2, b, d1 are coplanar a necessary condition →87
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Epipolar Geometry Example: Forward Motion
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image 1 image 2
• red: correspondences click on the image to see their IDs
• green: epipolar line pairs per correspondence same ID in both images

Epipole is the image of the other camera’s center.
How high was the camera above the floor?

movement2 1 h=?
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▶Cross Products and Maps by Skew-Symmetric 3× 3 Matrices

• There is an equivalence b×m = [b]×m, where [b]× is a 3× 3 skew-symmetric matrix

[b]× =

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 , assuming b =

b1b2
b3


Some properties

1. [b]⊤× = −[b]× the general antisymmetry property

2. A is skew-symmetric iff x⊤Ax = 0 for all x skew-sym mtx generalizes cross products

3. [b]3× = −∥b∥2 · [b]×
4. ∥[b]×∥F =

√
2 ∥b∥ Frobenius norm (∥A∥F =

√
tr(A⊤A) =

√∑
i,j |aij |

2)

5. rank [b]× = 2 iff ∥b∥ > 0 check minors of [b]×

6. [b]×b = 0

7. eigenvalues of [b]× are (0, λ,−λ)

8. for any 3× 3 regular B : B⊤[Bz]×B = detB [z]× follows from the factoring on →39

9. in particular: if RR⊤ = I then [Rb]× = R[b]×R
⊤

• note that if Rb is rotation about b then Rbb = b

• note [b]× is not a homography; it is not a rotation matrix it is the logarithm of a rotation mtx
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▶Expressing Epipolar Constraint Algebraically

"p"b �2�1 d2d1
e2e1m1

X
C2l1 m2C1 l2

Pi =
[
Qi qi

]
= Ki

[
Ri ti

]
, i = 1, 2

defs:
R21 – relative camera rotation, R21 = R2R

⊤
1

t21 – relative camera translation, t21 = t2 − R21t1 = −R2b →74

b – baseline vector (world coordinate system)

remember: C = −Q−1q = −R⊤t →33 and 35

0 = d⊤
2 pε︸︷︷︸
normal of ε

≃ (Q−1
2 m2)

⊤︸ ︷︷ ︸
optical ray

Q⊤
1 l1︸ ︷︷ ︸

optical plane

= m⊤
2 Q−⊤

2 Q⊤
1 (e1 ×m1)︸ ︷︷ ︸

image of ε in π2

= m⊤
2

(
Q−⊤

2 Q⊤
1 [e1]×

)︸ ︷︷ ︸
fundamental matrix F

m1

Epipolar constraint m⊤
2 Fm1 = 0 is a point-line incidence constraint

• point m2 is incident on epipolar line l2 ≃ Fm1

• point m1 is incident on epipolar line l1 ≃ F⊤m2

• Fe1 = F⊤e2 = 0 (non-trivially)
• all epipolars meet at the epipole

e1 ≃ Q1C2 + q1 = Q1C2 −Q1C1 = K1R1b = −K1R1R
⊤
2 t21 = −K1R

⊤
21t21

F = Q−⊤
2 Q⊤

1 [e1]× = Q−⊤
2 Q⊤

1 [−K1R
⊤
21t21]× =

⊛ 1· · · ≃ K−⊤
2 [−t21]×R21K

−1
1 fundamental

E = [−t21]×R21 = [R2b]×︸ ︷︷ ︸
baseline in Cam 2

R21
→76/9
= R21 [R1b]×︸ ︷︷ ︸

baseline in Cam 1

= R21[−R⊤
21t21]× essential
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▶The Structure and the Key Properties of the Fundamental Matrix

F = ( Q2Q
−1
1︸ ︷︷ ︸

epipolar homography He

)−⊤[e1]× = K−⊤
2 R21K

⊤
1︸ ︷︷ ︸

H−⊤
e

[

left epipole︷︸︸︷
e1 ]×

→76≃ [

right epipole︷ ︸︸ ︷
Hee1]×He = K−⊤

2 [−t21]×R21︸ ︷︷ ︸
essential matrix E

K−1
1

1. E captures relative camera pose only [Longuet-Higgins 1981]

(the change of the world coordinate system does not change E)[
R′

i t′i
]
=

[
Ri ti

]
·
[
R t
0⊤ 1

]
=

[
RiR Rit+ ti

]
,

then
R′

21 = R′
2R

′
1
⊤

= · · · = R21 t′21 = t′2 −R′
21t

′
1 = · · · = t21

2. the translation length t21 is lost since E is homogeneous

3. F maps points to lines and it is not a homography

4. He maps epipoles to epipoles, H−⊤
e epipolar lines to epipolar lines: l2 ≃ H−⊤

e l1

l1

e1

e1 × l1

e1

another epipolar line map: l2 ≃ F[e1]×l1 = F(e1 × l1)

• proof by point/line ‘transmutation’ (left)
• point e1 does not lie on line e1 (dashed): e⊤1 e1 ̸= 0

• F[e1]× is not a homography, unlike H−⊤
e but it does the same job for

epipolar line mapping
• no need to decompose F to obtain He
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▶Summary: Relations and Mappings Involving Fundamental Matrix

�2�1 e2e1m1 l1 m2l2
Fm1 0 = m⊤

2 Fm1

e1 ≃ null(F), e2 ≃ null(F⊤)

e1 ≃ H−1
e e2 e2 ≃ Hee1

l1 ≃ F⊤m2 l2 ≃ Fm1

l1 ≃ H⊤
e l2 l2 ≃ H−⊤

e l1

l1 ≃ F⊤[e2]×l2 l2 ≃ F[e1]×l1

m⊤
2 Fm1 = 0m1 m2

l1l2

F⊤F

H−⊤
e or F [e1]×

H⊤
e or F⊤[e2]×

• F[e1]× maps epipolar lines to epipolar lines but it is not a
homography

• He = Q2Q
−1
1 is the epipolar homography→78

H−⊤
e maps epipolar lines to epipolar lines, where

He = Q2Q
−1
1 = K2R21K

−1
1

you have seen this →59
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Thank You
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