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Some Homographic Tasters

Rectification of camera rotation: →59 (geometry), →129 (homography estimation)

H ≃ KR⊤K−1 maps from image plane to facade plane

Homographic Mouse for Visual Odometry: [Mallis 2007]

illustrations courtesy of AMSL Racing Team, Meiji University and LIBVISO: Library for VISual Odometry

H ≃ K
(
R− tn⊤

d

)
K−1 maps from plane to translated plane [H&Z, p. 327]
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▶Homography Subgroups: Euclidean Mapping (aka Rigid Motion)

• Euclidean mapping (EM): rotation, translation and their
combination

H =

cosϕ − sinϕ tx
sinϕ cosϕ ty
0 0 1

 =

[
R t

0⊤ 1

]
∈ SE(2)

• note: action H(x) = Rx+ t : R2 → R2, not commutative
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rotation by 30◦, then translation by (7, 2)

EM = The most general homography preserving

1. lengths: Let x′
i = H(xi). Then

∥x′
2 − x′

1∥ = ∥H(x2)−H(x1)∥ =
⊛ P1; 1pt

· · · = ∥x2 − x1∥

2. angles check the dot-product of normalized differences from a point (x − z)⊤(y − z) (Cartesian(!))

3. areas: detH = 1 ⇒ unit Jacobian; follows from 1. and 2.

• eigenvalues
(
1, e−iϕ, eiϕ

)
• eigenvectors when ϕ ̸= kπ, k = 0, 1, . . . (columnwise)

e1 ≃

tx + ty cot ϕ
2

ty − tx cot ϕ
2

2

 , e2 ≃

i
1
0

 , e3 ≃

−i
1
0

 e2, e3 – circular points, i – imaginary unit

4. circular points: complex points at infinity (i, 1, 0), (−i, 1, 0) (preserved even by similarity)

• similarity: scaled Euclidean mapping (does not preserve lengths, areas)
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▶Homography Subgroups: Affine Mapping (Affinity)

H =

a11 a12 tx
a21 a22 ty
0 0 1


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rotation by 30◦

then scaling by diag(1, 1.5, 1)

then translation by (7, 2)

Affinity = The most general homography preserving
• parallelism
• ratio of areas
• ratio of lengths on parallel lines
• linear combinations of vectors (e.g. midpoints, centers of gravity)
• convex hull
• line at infinity n∞ (not pointwise)

does not preserve
• lengths
• angles
• areas
• circular points
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observe H
⊤
n∞ ≃

a11 a21 0
a12 a22 0
tx ty 1

0
0
1

 =

0
0
1

 = n∞ ⇒ n∞ ≃ H
−⊤

n∞



▶Homography Subgroups: General Homography

H =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 H ∈ SL(3)

preserves only

• incidence and concurrency
• collinearity
• cross-ratio (ratio of ratios) on the line →46

does not preserve

• lengths
• areas
• parallelism
• ratio of areas
• ratio of lengths
• linear combinations of vectors
• convex hull
• line at infinity n∞
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H =

7 −0.5 6
3 1 3
1 0 1


line n = (1, 0, 1) is mapped to n∞: H−⊤n ≃ n∞

(where in the picture is the line n?)
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▶Canonical Perspective Camera (Pinhole Camera, Camera Obscura)

Oex

X = (x, y, z)

π

xp

(x′, y′, 1)

ezC

ey

1. in this picture we are looking ‘down the street’

2. right-handed canonical coordinate system (x, y, z) with unit
vectors ex, ey , ez

3. origin = center of projection C

4. image plane π at unit distance from C

5. optical axis O is perpendicular to π

6. principal point xp: intersection of O and π

7. perspective camera is given by C and π

z − 11

X

y
ey

y′

π

C
O

y–z plane

projected point in the natural image coordinate system:

tanα =
y′

1
= y′ =

y

1 + z − 1
=

y

z
, x′ =

x

z

3D Computer Vision: II. Perspective Camera (p. 27/197) R. Šára, CMP; rev. 27–Sep–2022



▶Natural and Canonical Image Coordinate Systems

projected point in canonical camera (z ̸= 0)

(x′, y′, 1) =
(x
z
,
y

z
, 1

)
=

1

z
(x, y, z) ≃ (x, y, z) ≡

xy
z

 =

1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

P0=
[
I 0

]
·


x
y
z
1

 = P0 X

projected point in scanned image scale by f and translate origin to image corner

xp = (u0, v0)

(u, v)

(0, 0) eu

ev

Oex

X = (x, y, z)

π

xp

(x′, y′, 1)

ezC

ey

u = f
x

z
+ u0

v = f
y

z
+ v0

1

z

f x+ z u0

f y + z v0
z

 ≃

f 0 u0

0 f v0
0 0 1

 ·

1 0 0 0
0 1 0 0
0 0 1 0

 ·


x
y
z
1

 = KP0 X= PX

• ‘calibration’ matrix K transforms canonical P0 to standard perspective camera P
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▶Computing with Perspective Camera Projection Matrix

Projection from world to image in standard camera P:

f 0 u0 0
0 f v0 0
0 0 1 0


︸ ︷︷ ︸

P


x
y
z
1

 =

fx+ u0z
fy + v0z

z

 ≃

x+ z
f
u0

y + z
f
v0

z
f


︸ ︷︷ ︸

(a)

≃

m1

m2

m3

 = m

cross-check:
m1

m3
=

f x

z
+ u0 = u,

m2

m3
=

f y

z
+ v0 = v when m3 ̸= 0

f – ‘focal length’ – converts length ratios to pixels, [f ] = px, f > 0

(u0, v0) – principal point in pixels

Perspective Camera:

1. dimension reduction since P ∈ R3,4

2. nonlinear unit change 111 7→ 111 · z/f , see (a)
for convenience we use P11 = P22 = f rather than P33 = 1/f and the u0, v0 in relative units

3. m3 = 0 represents points at infinity in image plane π i.e. points with z = 0
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▶Changing The Outer (World) Reference Frame

A transformation of a point from the world to camera coordinate system:

Xc = RXw + t

R; tFw F

world

cam

R – camera rotation matrix world orientation in the camera coordinate frame Fc

t – camera translation vector world origin in the camera coordinate frame Fc

PXc= KP0

[
Xc

1

]
= KP0

[
RXw + t

1

]
= K

[
I 0

]
︸ ︷︷ ︸

P0

[
R t

0⊤ 1

]
︸ ︷︷ ︸

T

[
Xw

1

]
= K

[
R t

]
Xw

P0 (a 3× 4 mtx) discards the last row of T

• R is rotation, R⊤R = I, detR = +1 I ∈ R3,3 identity matrix

• 6 extrinsic parameters: 3 rotation angles (Euler theorem), 3 translation components

• alternative, often used, camera representations

P = K
[
R t

]
= KR

[
I −C

]
C – camera position in the world reference frame Fw t = −RC
r⊤3 – optical axis in the world reference frame Fw third row of R: r3 = R−1[0, 0, 1]⊤

• we can save some conversion and computation by noting that KR
[
I −C

]
X= KR(X−C)
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▶Changing the Inner (Image) Reference Frame

The general form of calibration matrix K includes

• skew angle θ of the digitization raster

• pixel aspect ratio a

K =

a f −a f cot θ u0

0 f/ sin θ v0
0 0 1

 units: [f ] = px, [u0] = px, [v0] = px, [a] = 1

⊛ H1; 2pt: Give the parameters f, a, θ, u0, v0 a precise meaning by decomposing K to simple maps; deadline LD+2wk

Hints:

1. image projects to orthogonal system F⊥, then it maps by skew to F ′, then by scale a f , f to F ′′, then by translation
by u0, v0 to F ′′′

2. Skew: Do not confuse it with the shear mapping. Express point x as

x = u′eu′ + v′ev′ = u⊥e⊥u + v⊥e⊥v

e′u = e⊥u

e′ve⊥v
θ

e: are unit-length basis vectors; consider their four pairwise dot-products.

3. K maps from F⊥ to F ′′′ as
w′′′ [u′′′, v′′′, 1]⊤ = K[u⊥, v⊥, 1]⊤
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▶Summary: Projection Matrix of a General Finite Perspective Camera

m≃ PX, P =
[
Q q

]
≃ K

[
R t

]
= KR

[
I −C

]
a recipe for filling P

general finite perspective camera has 11 parameters:

• 5 intrinsic parameters: f , u0, v0, a, θ finite camera: detK ̸= 0

• 6 extrinsic parameters: t, R(α, β, γ)

Representation Theorem: The set of projection matrices P of finite perspective cameras is isomorphic to the set of
homogeneous 3× 4 matrices with the left 3× 3 submatrix Q non-singular.

random finite camera: Q = rand(3,3); while det(Q)==0, Q = rand(3,3); end, P = [Q, rand(3,1)];
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▶Projection Matrix Decomposition

P =
[
Q q

]
−→ K

[
R t

]
Q ∈ R3,3 full rank (if finite perspective camera; see [H&Z, Sec. 6.3] for cameras at infinity)

K ∈ R3,3 upper triangular with positive diagonal elements
R ∈ R3,3 rotation mtx: R

⊤
R = I and detR = +1

1.
[
Q q

]
= K

[
R t

]
=

[
KR Kt

]
also →35

2. RQ decomposition of Q = KR using three Givens rotations [H&Z, p. 579]

K = Q R32R31R21︸ ︷︷ ︸
R−1

QR32 =
[ · · ·
· · ·
· 0 ·

]
, QR32R31 =

[ · · ·
· · ·
0 0 ·

]
, QR32R31R21 =

[ · · ·
0 · ·
0 0 ·

]

Rij zeroes element ij in Q affecting only columns i and j and the sequence preserves previously zeroed elements, e.g.
(see the next slide for derivation details)

R32 =

1 0 0
0 c −s
0 s c

 gives
c2 + s2 = 1

0 = k32 = c q32 + s q33
⇒ c =

q33√
q232 + q233

s =
−q32√
q232 + q233

⊛ P1; 1pt: Multiply known matrices K, R and then decompose back; discuss numerical errors

• RQ decomposition nonuniqueness: KR = KT−1TR, where T = diag(−1,−1, 1) is also a rotation, we must correct
the result so that the diagonal elements of K are all positive ‘thin’ RQ decomposition

• care must be taken to avoid overflow, see [Golub & van Loan 2013, sec. 5.2]
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RQ Decomposition Step

Q = Array [ q #1 ,#2 & , { 3 , 3 } ] ;

R32 = { { 1 , 0 , 0 } , { 0 , c , - s } , { 0 , s , c } } ; R32 // MatrixForm

1 0 0

0 c - s

0 s c

Q1 = Q . R32 ; Q1 // MatrixForm

q 1,1 c q 1,2 + s q 1,3 - s q 1,2 + c q 1,3

q 2,1 c q 2,2 + s q 2,3 - s q 2,2 + c q 2,3

q 3,1 c q 3,2 + s q 3,3 - s q 3,2 + c q 3,3

s1 = Solve [ { Q1 [ [ 3 ] ] [ [ 2 ] ] ⩵ 0 , c ^ 2 + s ^ 2 ⩵ 1 } , { c , s } ] [ [ 2 ] ]

 c →

q 3,3

q 3,2
2

+ q 3,3
2

, s → -

q 3,2

q 3,2
2

+ q 3,3
2



Q1 /. s1 // Simplify // MatrixForm

q 1,1

-q1,3 q3,2 +q1,2 q3,3

q3,2
2

+q3,3
2

q1,2 q3,2 +q1,3 q3,3

q3,2
2

+q3,3
2

q 2,1

-q2,3 q3,2 +q2,2 q3,3

q3,2
2

+q3,3
2

q2,2 q3,2 +q2,3 q3,3

q3,2
2

+q3,3
2

q 3,1 0 q 3,2
2

+ q 3,3
2
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▶Center of Projection (Optical Center)

Observation: finite P has a non-trivial right null-space rank 3 but 4 columns

Theorem
Let P be a camera and let there be B ̸= 0 s.t. PB= 0. Then B is equivalent to the projection center C
(homogeneous, in world coordinate frame).

Proof.
1. Let AB be a spatial line (B given from PB= 0, A ̸= B). Then

X(λ) ≃ λA+ (1− λ)B, λ ∈ R (world frame)
B?

B = C?

A X(λ)

2. It projects to
PX(λ) ≃ λPA+ (1− λ)PB≃ PA

• the entire line projects to a single point ⇒ it must pass through the projection center of P

• this holds for any choice of A ̸= B ⇒ the only common point of the lines is the C, i.e. B ≃ C ⊓⊔
Hence

0 = PC=
[
Q q

] [C
1

]
= QC+ q ⇒ C = −Q−1q

C= (cj), where cj = (−1)j detP(j), in which P(j) is P with column j dropped

Matlab: C_homo = null(P); or C = -Q\q;
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▶Optical Ray

Optical ray: Spatial line that projects to a single image point.

1. Consider the following spatial line (world frame)
d ∈ R3 line direction vector, ∥d∥ = 1, λ ∈ R, Cartesian representation

X(λ) = C+ λd

2. The projection of the (finite) point X(λ) is

m≃
[
Q q

] [X(λ)
1

]
= Q(C+ λd) + q = λQd =

= λ
[
Q q

] [d
0

]
. . . which is also the image of a point at infinity in P3

• optical ray line corresponding to image point m is the set

X(µ) = C+ µQ−1m, µ ∈ R (µ = 1/λ)

X(λ)

C
π

m

d

• optical ray direction may be represented by a point at infinity (d, 0) in P3

• optical ray is expressed in world coordinate frame
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Thank You
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