3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/tdv/start http://cmp.felk.cvut.cz mailto:sara@cmp.felk.cvut.cz phone ext. 7203

rev. September 27, 2022

Open Informatics Master's Course

Some Homographic Tasters

Rectification of camera rotation: \rightarrow 59 (geometry), \rightarrow 129 (homography estimation)

 $\boldsymbol{H} \simeq \boldsymbol{K}\boldsymbol{R}^{\top}\boldsymbol{K}^{-1}$ maps from image plane to facade plane

Homographic Mouse for Visual Odometry: [Mallis 2007]

illustrations courtesy of AMSL Racing Team, Meiji University and LIBVISO: Library for VISual Odometry

$$\mathbf{H} \simeq \mathbf{K} \left(\mathbf{R} - rac{\mathbf{t} \mathbf{n}^{ op}}{d}
ight) \mathbf{K}^{-1}$$

maps from plane to translated plane [H&Z, p. 327]

► Homography Subgroups: Euclidean Mapping (aka Rigid Motion)

 Euclidean mapping (EM): rotation, translation and their combination

$$\mathbf{H} = \begin{bmatrix} \cos \phi & -\sin \phi & t_x \\ \sin \phi & \cos \phi & t_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^\top & 1 \end{bmatrix} \in \mathrm{SE}(2)$$

• note: action $H(\mathbf{x}) = \mathbf{R}\mathbf{x} + \mathbf{t} \colon \mathbb{R}^2 \to \mathbb{R}^2$, not commutative

rotation by 30° , then translation by (7, 2)

EM = The most general homography preserving

1. lengths: Let $\mathbf{x}_i' = H(\mathbf{x}_i)$. Then

$$\|\mathbf{x}_{2}' - \mathbf{x}_{1}'\| = \|H(\mathbf{x}_{2}) - H(\mathbf{x}_{1})\| = \overset{\text{$\$$ P1; 1pt}}{\cdots} = \|\mathbf{x}_{2} - \mathbf{x}_{1}\|$$

check the dot-product of normalized differences from a point $(\mathbf{x} - \mathbf{z})^{\top}(\mathbf{y} - \mathbf{z})$ (Cartesian(!))

2. angles

- 3. areas: $\det \mathbf{H} = 1 \Rightarrow \text{unit Jacobian}$; follows from 1. and 2.
- eigenvalues $(1, e^{-i\phi}, e^{i\phi})$
- eigenvectors when $\phi \neq k\pi$, $k = 0, 1, \dots$ (columnwise)

$$\mathbf{e}_1 \simeq egin{bmatrix} t_x + t_y \cot rac{\phi}{2} \\ t_y - t_x \cot rac{\phi}{2} \\ 0 \end{bmatrix}, \quad \mathbf{e}_2 \simeq egin{bmatrix} i \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{e}_3 \simeq egin{bmatrix} -i \\ 1 \\ 0 \end{bmatrix} \qquad \mathbf{e}_2, \, \mathbf{e}_3 - \mathsf{circular points}, \, i - \mathsf{imaginary unit} \end{cases}$$

- circular points: complex points at infinity (i, 1, 0), (-i, 1, 0) (preserved even by similarity)
- similarity: scaled Euclidean mapping (does not preserve lengths, areas)

► Homography Subgroups: Affine Mapping (Affinity)

$$\mathbf{H} = \begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

then translation by (7, 2)

Affinity = The most general homography preserving

- parallelism
- ratio of areas
- ratio of lengths on parallel lines
- linear combinations of vectors (e.g. midpoints, centers of gravity)
- convex hull

• convex null • line at infinity
$$\underline{\mathbf{n}}_{\infty}$$
 (not pointwise) observe $\mathbf{H}^{\top}\underline{\mathbf{n}}_{\infty} \simeq \begin{bmatrix} a_{11} & a_{21} & 0 \\ a_{12} & a_{22} & 0 \\ t_x & t_y & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \underline{\mathbf{n}}_{\infty} \Rightarrow \underline{\mathbf{n}}_{\infty} \simeq \mathbf{H}^{-\top}\underline{\mathbf{n}}_{\infty}$

does not preserve

- lengths
- angles
- areas
- circular points

► Homography Subgroups: General Homography

$$\mathbf{H} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \qquad \mathbf{H} \in \mathrm{SL}(3)$$

preserves only

- incidence and concurrency
- collinearity
- cross-ratio (ratio of ratios) on the line \rightarrow 46

does not preserve

- lengths
- areas
- parallelism
- ratio of areas
- ratio of lengths
- linear combinations of vectors
- convex hull
- line at infinity \mathbf{n}_{∞}

line
$$\underline{\mathbf{n}} = (1, 0, 1)$$
 is mapped to $\underline{\mathbf{n}}_{\infty} \colon \mathbf{H}^{-\top} \underline{\mathbf{n}} \simeq \underline{\mathbf{n}}_{\infty}$

(where in the picture is the line n?)

► Canonical Perspective Camera (Pinhole Camera, Camera Obscura)

- 1. in this picture we are looking 'down the street'
- 2. right-handed canonical coordinate system (x,y,z) with unit vectors \mathbf{e}_x , \mathbf{e}_y , \mathbf{e}_z
- 3. origin = center of projection C
- 4. image plane π at unit distance from C
- 5. optical axis O is perpendicular to π
- **6**. principal point x_p : intersection of O and π
- 7. perspective camera is given by C and π

projected point in the natural image coordinate system:

$$\tan \alpha = \frac{y'}{1} = y' = \frac{y}{1+z-1} = \frac{y}{z}, \qquad x' = \frac{x}{z}$$

► Natural and Canonical Image Coordinate Systems

projected point in canonical camera
$$(z \neq 0)$$

$$(x',y',1) = \left(\frac{x}{z},\frac{y}{z},1\right) = \frac{1}{z}(x,y,z) \simeq (x,y,z) \equiv \begin{bmatrix} x\\y\\z \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 1 & 0 \end{bmatrix}}_{\mathbf{P}_{\mathbf{p}}\left[\mathbf{I}-\mathbf{Q}\right]} \cdot \begin{bmatrix} x\\y\\z\\1 \end{bmatrix} = \mathbf{P}_0 \, \underline{\mathbf{X}}$$

projected point in scanned image

scale by f and translate origin to image corner

$$\begin{array}{c|c}
\mathbf{x} = (x, y, z) \\
\mathbf{0} \quad \mathbf{0} \\
\mathbf{0} \quad \mathbf{0}
\end{array}$$

$$u = f \frac{x}{z} + u_0$$
$$v = f \frac{y}{z} + v_0$$

$$\frac{1}{z} \begin{bmatrix} f \, x + z \, u_0 \\ f \, y + z \, v_0 \\ z \end{bmatrix} \simeq \begin{bmatrix} f & 0 & u_0 \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \mathbf{K} \mathbf{P}_0 \, \underline{\mathbf{X}} = \mathbf{P} \, \underline{\mathbf{X}}$$

ullet 'calibration' matrix ${f K}$ transforms canonical ${f P}_0$ to standard perspective camera ${f P}$

▶ Computing with Perspective Camera Projection Matrix

Projection from world to image in standard camera ${\bf P}$:

$$\underbrace{\begin{bmatrix} f & 0 & u_0 & 0 \\ 0 & f & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}}_{\mathbf{P}} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} fx + u_0z \\ fy + v_0z \\ z \end{bmatrix} \simeq \underbrace{\begin{bmatrix} x + \frac{z}{f}u_0 \\ y + \frac{z}{f}v_0 \\ \frac{z}{f} \end{bmatrix}}_{\mathbf{(a)}} \simeq \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} = \mathbf{m}$$

cross-check:
$$\frac{m_1}{m_3}=\frac{f\,x}{z}+u_0=u, \qquad \frac{m_2}{m_3}=\frac{f\,y}{z}+v_0=v \quad \text{when} \quad m_3\neq 0$$

$$f$$
 - 'focal length' - converts length ratios to pixels, $[f] = px$, $f > 0$

 (u_0,v_0) – principal point in pixels

Perspective Camera:

- 1. dimension reduction
- 2. In the state of the state of
 - 2. nonlinear unit change $1 \mapsto 1 \cdot z/f$, see (a) for convenience we use $P_{11} = P_{22} = f$ rather than $P_{33} = 1/f$ and the u_0 , v_0 in relative units
 - 3. $m_3=0$ represents points at infinity in image plane π i.e. points with z=0

since $\mathbf{P} \in \mathbb{R}^{3,4}$

▶Changing The Outer (World) Reference Frame

A transformation of a point from the world to camera coordinate system:

$$\mathbf{X}_c = \mathbf{R} \, \mathbf{X}_w + \mathbf{t}$$

R – camera rotation matrix

t - camera translation vector

$$\mathcal{F}_w$$
 world orientation in the camera coordinate frame \mathcal{F}_c

translation vector world origin in the camera coordinate frame
$$\mathcal{F}_c$$

$$\mathbf{P} \, \underline{\mathbf{X}}_c = \mathbf{K} \mathbf{P}_0 \begin{bmatrix} \mathbf{X}_c \\ 1 \end{bmatrix} = \mathbf{K} \mathbf{P}_0 \begin{bmatrix} \mathbf{R} \mathbf{X}_w + \mathbf{t} \\ 1 \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^\top & 1 \end{bmatrix} \begin{bmatrix} \mathbf{X}_w \\ 1 \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \underline{\mathbf{X}}_w$$

$$\mathbf{P}_0$$
 \mathbf{T} \mathbf{P}_0 (a 3×4 mtx) discards the last row of \mathbf{T}

• R is rotation, $\mathbf{R}^{\top}\mathbf{R} = \mathbf{I}$, $\det \mathbf{R} = +1$

- extrinsic parameters: 3 rotation angles (Euler theorem), 3 translation components
- alternative, often used, camera representations

$$P = K \begin{bmatrix} R & t \end{bmatrix} = KR \begin{bmatrix} I & -C \end{bmatrix}$$

$$\begin{array}{ll} \mathbf{C} & \text{--camera position in the world reference frame } \mathcal{F}_w \\ \mathbf{r}_3^\top & \text{--optical axis in the world reference frame } \mathcal{F}_w \end{array}$$

third row of \mathbf{R} : $\mathbf{r}_3 = \mathbf{R}^{-1} [0, 0, 1]^\top$

we can save some conversion and computation by noting that $\mathbf{KR}[\mathbf{I} \quad -\mathbf{C}] \mathbf{X} = \mathbf{KR}(\mathbf{X} - \mathbf{C})$

 $\mathbf{I} \in \mathbb{R}^{3,3}$ identity matrix

► Changing the Inner (Image) Reference Frame

The general form of calibration matrix ${\bf K}$ includes

- skew angle θ of the digitization raster
- pixel aspect ratio a

$$\mathbf{K} = \begin{bmatrix} a f & -a f \cot \theta & u_0 \\ 0 & f / \sin \theta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{units: } [f] = \mathrm{px}, \ [u_0] = \mathrm{px}, \ [v_0] = \mathrm{px}, \ [a] = 1$$

 \circledast H1; 2pt: Give the parameters f, a, θ, u_0, v_0 a precise meaning by decomposing ${f K}$ to simple maps; deadline LD+2 wk

Hints:

- 1. image projects to orthogonal system F^{\perp} , then it maps by skew to F', then by scale af, f to F'', then by translation by u_0 , v_0 to F'''
- 2. Skew: Do not confuse it with the shear mapping. Express point x as

$$\mathbf{x} = u'\mathbf{e}_{u'} + v'\mathbf{e}_{v'} = u^{\perp}\mathbf{e}_{u}^{\perp} + v^{\perp}\mathbf{e}_{v}^{\perp}$$

$$\mathbf{e}_{v}^{\perp} \qquad \mathbf{e}_{u}' = \mathbf{e}_{u}^{\perp}$$

- e: are unit-length basis vectors; consider their four pairwise dot-products.
- 3. **K** maps from F^{\perp} to F''' as

$$w'''[u''', v''', 1]^{\top} = \mathbf{K}[u^{\perp}, v^{\perp}, 1]^{\top}$$

▶Summary: Projection Matrix of a General Finite Perspective Camera

$$\underline{\mathbf{m}} \simeq \mathbf{P}\underline{\mathbf{X}}, \qquad \mathbf{P} = \begin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} \simeq \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} = \mathbf{K}\mathbf{R} \begin{bmatrix} \mathbf{I} & -\mathbf{C} \end{bmatrix}$$

a recipe for filling ${f P}$

finite camera: $\det \mathbf{K} \neq 0$

general finite perspective camera has $11\ parameters$:

- 5 intrinsic parameters: f, u_0 , v_0 , a, θ
- 6 extrinsic parameters: \mathbf{t} , $\mathbf{R}(\alpha, \beta, \gamma)$

Representation Theorem: The set of projection matrices $\mathbf P$ of finite perspective cameras is isomorphic to the set of homogeneous 3×4 matrices with the left 3×3 submatrix $\mathbf Q$ non-singular.

random finite camera: Q = rand(3,3); while det(Q) ==0, Q = rand(3,3); end, P = [Q, rand(3,1)];

▶ Projection Matrix Decomposition

$$\mathbf{P} = \begin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} \longrightarrow \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}$$

 $\begin{array}{lll} \mathbf{Q} \in \mathbb{R}^{3,3} & & \underbrace{\text{full rank}} & \text{(if finite perspective camera; see [H\&Z, Sec. 6.3] for cameras at infinity)} \\ \mathbf{K} \in \mathbb{R}^{3,3} & & \underbrace{\text{upper triangular with positive diagonal elements}}_{\mathbf{R}^{\top}\mathbf{R} = \mathbf{I} \text{ and } \det \mathbf{R} = +1} \\ \end{array}$

$$1. \ [\mathbf{Q} \ \mathbf{q}] = \mathbf{K} [\mathbf{R} \ \mathbf{t}] = [\mathbf{K} \mathbf{R} \ \mathbf{K} \mathbf{t}]$$

also →35

[H&Z, p. 579]

2. RQ decomposition of $\mathbf{Q} = \mathbf{K}\mathbf{R}$ using three Givens rotations

$$\mathbf{K} = \mathbf{Q} \underbrace{\mathbf{R}_{32} \mathbf{R}_{31} \mathbf{R}_{21}}_{\mathbf{Q} \mathbf{R}_{32}} \qquad \mathbf{Q} \mathbf{R}_{32} = \begin{bmatrix} \vdots & \vdots \\ \vdots & \vdots \end{bmatrix}, \ \mathbf{Q} \mathbf{R}_{32} \mathbf{R}_{31} = \begin{bmatrix} \vdots & \vdots \\ \vdots & \vdots \end{bmatrix}, \ \mathbf{Q} \mathbf{R}_{32} \mathbf{R}_{31} \mathbf{R}_{21} = \begin{bmatrix} \vdots & \vdots \\ \vdots & \vdots \\ 0 & 0 \end{bmatrix}$$

 \mathbf{R}_{ij} zeroes element ij in \mathbf{Q} affecting only columns i and j and the sequence preserves previously zeroed elements, e.g. (see the next slide for derivation details)

$$\mathbf{R}_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c \end{bmatrix} \text{ gives } \begin{array}{c} c^2 + s^2 = 1 \\ 0 = k_{32} = c \frac{q_{32}}{q_{32}} + s \frac{q_{33}}{q_{33}} \\ \Rightarrow c = \frac{q_{33}}{\sqrt{q_{32}^2 + q_{33}^2}} \end{array} \quad s = \frac{-q_{32}}{\sqrt{q_{32}^2 + q_{33}^2}}$$

- ® P1; 1pt: Multiply known matrices K, R and then decompose back; discuss numerical errors
 - RQ decomposition nonuniqueness: $\mathbf{K}\mathbf{R} = \mathbf{K}\mathbf{T}^{-1}\mathbf{T}\mathbf{R}$, where $\mathbf{T} = \mathrm{diag}(-1,-1,1)$ is also a rotation, we must correct the result so that the diagonal elements of \mathbf{K} are all positive 'thin' RQ decomposition
 - care must be taken to avoid overflow, see [Golub & van Loan 2013, sec. 5.2]

RQ Decomposition Step

$$Q = Array \left[q_{\pi 1, \pi 2} \ 6, \ \{3, \ 3\} \right];$$

$$R32 = \left\{ \{1, \ 0, \ 0\}, \ \{0, \ c, \ -s\}, \ \{0, \ s, \ c\} \right\}; \ R32 \ // \ MatrixForm$$

$$\begin{pmatrix} q_{1,1} & c & q_{1,2} + s & q_{1,3} & -s & q_{1,2} + c & q_{1,3} \\ q_{2,1} & c & q_{2,2} + s & q_{2,3} & -s & q_{2,2} + c & q_{2,3} \\ q_{3,1} & c & q_{3,2} + s & q_{3,3} & -s & q_{3,2} + c & q_{3,3} \end{pmatrix}$$

$$\left\{c \to \frac{q_{3,3}}{\sqrt{q_{3,2}^2 + q_{3,3}^2}}, s \to -\frac{q_{3,2}}{\sqrt{q_{3,2}^2 + q_{3,3}^2}}\right\}$$

Q1 /. s1 // Simplify // MatrixForm

$$\begin{array}{c} q_{1,1} & \frac{\neg q_{1,3} \ q_{3,2} \cdot q_{1,2} \ q_{3,3}}{\sqrt{q_{3,2}^2 \cdot q_{3,3}^2}} & \frac{q_{1,2} \ q_{3,2} \cdot q_{1,3} \ q_{3,3}}{\sqrt{q_{3,2}^2 \cdot q_{3,3}^2}} \\ \\ q_{2,1} & \frac{\neg q_{2,3} \ q_{3,2} \cdot q_{2,2} \ q_{3,3}}{\sqrt{q_{3,2}^2 \cdot q_{3,3}^2}} & \frac{q_{2,2} \ q_{3,2} \cdot q_{2,3} \ q_{3,3}}{\sqrt{q_{3,2}^2 \cdot q_{3,3}^2}} \\ \\ q_{3,1} & 0 & \sqrt{q_{3,2}^2 \cdot q_{3,3}^2} \end{array}$$

Observation: finite P has a non-trivial right null-space

rank 3 but 4 columns

П

Theorem

Let P be a camera and let there be $\underline{B} \neq 0$ s.t. $P \underline{B} = 0$. Then \underline{B} is equivalent to the projection center \underline{C} (homogeneous, in world coordinate frame).

Proof.

1. Let AB be a spatial line (B given from PB = 0, $A \neq B$). Then

$$\underline{\mathbf{X}}(\lambda) \simeq \lambda\,\underline{\mathbf{A}} + (1-\lambda)\,\underline{\mathbf{B}}, \qquad \lambda \in \mathbb{R} \qquad \text{(world frame)}$$

2. It projects to

$$\mathbf{P}\underline{\mathbf{X}}(\lambda) \simeq \lambda \, \mathbf{P} \, \underline{\mathbf{A}} + (1 - \lambda) \, \mathbf{P} \, \underline{\mathbf{B}} \simeq \mathbf{P} \, \underline{\mathbf{A}}$$

- ullet the entire line projects to a single point \Rightarrow it must pass through the projection center of ${f P}$
- this holds for any choice of $A \neq B \Rightarrow$ the only common point of the lines is the C, i.e. $\underline{\mathbf{B}} \simeq \underline{\mathbf{C}}$

Hence

$$\mathbf{0} = \mathbf{P}\,\mathbf{C} = egin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} egin{bmatrix} \mathbf{C} \\ 1 \end{bmatrix} = \mathbf{Q}\,\mathbf{C} + \mathbf{q} \ \Rightarrow \ \mathbf{C} = -\mathbf{Q}^{-1}\mathbf{q}$$

 $\underline{\mathbf{C}} = (c_j)$, where $c_j = (-1)^j \det \mathbf{P}^{(j)}$, in which $\mathbf{P}^{(j)}$ is \mathbf{P} with column j dropped Matlab: \mathbf{C}_{-} homo = $\mathrm{null}(\mathbf{P})$; or $\mathbf{C} = -\mathbb{Q} \setminus \mathbf{q}$;

▶Optical Ray

Optical ray: Spatial line that projects to a single image point.

1. Consider the following spatial line (world frame)

 $\mathbf{d} \in \mathbb{R}^3$ line direction vector, $\|\mathbf{d}\| = 1, \ \lambda \in \mathbb{R},$ Cartesian representation

$$\mathbf{X}(\lambda) = \mathbf{C} + \lambda \, \mathbf{d}$$

2. The projection of the (finite) point $X(\lambda)$ is

$$\underline{\mathbf{m}} \simeq \begin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} \begin{bmatrix} \mathbf{X}(\lambda) \\ 1 \end{bmatrix} = \mathbf{Q}(\mathbf{C} + \lambda \mathbf{d}) + \mathbf{q} = \lambda \mathbf{Q} \mathbf{d} =$$
$$= \lambda \begin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} \begin{bmatrix} \mathbf{d} \\ 0 \end{bmatrix}$$

 \ldots which is also the image of a point at infinity in \mathbb{P}^3

$$\mathbf{X}(\mu) = \mathbf{C} + \mu \mathbf{Q}^{-1} \underline{\mathbf{m}}, \qquad \mu \in \mathbb{R} \qquad (\mu = 1/\lambda)$$

- optical ray direction may be represented by a point at infinity $(\mathbf{d},0)$ in \mathbb{P}^3
- optical ray is expressed in world coordinate frame

