

Pursuit-Evasion Games II

Tomáš Kroupa

Department of Computer Science Faculty of Electrical Engineering Czech Technical University in Prague

Two-Player Zero-Sum Games

What we have learned

- Matrix games capture the strategic interaction between two players
- Their solutions are found by LP
- 🖒 Efficient algorithms
- 🖓 Single stage games

Where we will go

• Dynamic games

C Summary

- Iterative interaction between players in the changing environment
- 🖓 Scalability issues

Repeating Zero-Sum Games

- Pursuer **P** tries to capture evader **E**
- Stochastic policy describes the mixed strategy of each player in every state
- We are seeking a common generalization of
 - repeated TPZS games and
 - Markov decision processes (MDPs)

Stochastic Game

🖒 Two-Player Zero-Sum

- 1 Players are the planner and the adversary
- 2 Finite action sets M and N for the planner and the adversary, respectively
- 3 Finite set S of states
- 4 Transition function

 $T: S \times M \times N \to \Delta_S$

where T(s, i, j) is a probability distribution on S

6 Reward function

 $\textit{R} \colon \textit{S} \times \textit{M} \times \textit{N} \rightarrow \mathbb{R}$

where R(s, i, j) is a reward to the planner

An initial state is $s_0 \in S$. At each stage $\tau = 0, 1, 2, \ldots$:

- The players choose $(i_{\tau}, j_{\tau}) \in M \times N$ observing the history of past states/actions
- 2 The planner receives $R(s_{\tau}, i_{\tau}, j_{\tau})$ from the adversary
- 3 A new state $s_{\tau+1} \in S$ is determined randomly according to $T(s_{\tau}, i_{\tau}, j_{\tau})$

How to aggregate the rewards over an infinite history?

Discounting

$m \ref{C}$ The importance of future rewards

- A discount factor is a number $\gamma \in (0,1)$
- The discounted reward of planner over an infinite history (s_0, i_0, j_0, \dots) is

$$\sum_{\tau=0}^{\infty} \gamma^{\tau} R(s_{\tau}, i_{\tau}, j_{\tau}) = R(s_0, i_0, j_0) + \gamma R(s_1, i_1, j_1) + \gamma^2 R(s_2, i_2, j_2) + \cdots$$

$m \roldsymbol{C}$ For stochastic games

At stage au the players observe an entire history

$$h_{\tau} \coloneqq (s_0, i_0, j_0, \ldots, s_{\tau}, i_{\tau}, j_{\tau}).$$

A strategy of the planner is

- **1** behavioral if it is a mapping $h_{\tau} \mapsto p \in \Delta_M$ from histories to mixed actions
- 2 Markov if it is a behavioral strategy depending only on the current state s_{τ}
- \bigcirc stationary if it is a Markov strategy not depending on time au

Stationary Strategies

🖒 Special cases

A stationary strategy for the planner/adversary is a mapping

$$\pi \colon \mathcal{S} \to \Delta_{\mathcal{M}} \quad \text{and} \quad \sigma \colon \mathcal{S} \to \Delta_{\mathcal{N}},$$

respectively.

- If |S| = 1, then we obtain a two-person zero-sum game and the concept of mixed strategy
 If |N| = 1, then we get an MDP with
 - the concept of stochastic policy

How to evaluate stationary strategies?

Value/Quality Function

 $\mathfrak{L}(s_{\tau}), (i_{\tau}), (j_{\tau})$ are stochastic processes with respect to T, π, σ

• The value function is the expected reward starting from state s and then following strategies π and σ ,

$$\mathcal{V}_{\pi,\sigma}(oldsymbol{s}) = \mathbb{E}\left(\sum_{ au=0}^{\infty} \gamma^ au oldsymbol{R}(oldsymbol{s}_ au, oldsymbol{i}_ au, oldsymbol{j}_ au)
ight), \qquad oldsymbol{s}_0 = oldsymbol{s}.$$

• The Q-function is the expected reward starting from state *s*, taking actions *i* and *j*, and then following strategies π and σ ,

$$\mathcal{Q}_{\pi,\sigma}(\boldsymbol{s},i,j) = \mathbb{E}\left(\sum_{\tau=0}^{\infty} \gamma^{\tau} \mathcal{R}(\boldsymbol{s}_{\tau},i_{\tau},j_{\tau})\right), \qquad \boldsymbol{s}_0 = \boldsymbol{s}, i_0 = i, j_0 = j.$$

Expectation Equations

🖒 Part 1

$$\mathcal{V}_{\pi,\sigma}(s) = \sum_{i \in M} \sum_{j \in N} \pi_s(i) \cdot \sigma_s(j) \cdot \mathcal{Q}_{\pi,\sigma}(s,i,j)$$
$$\mathcal{Q}_{\pi,\sigma}(s,i,j) = R(s,i,j) + \gamma \sum_{s' \in S} T(s,i,j)(s') \cdot \mathcal{V}_{\pi,\sigma}(s')$$

Equation for the Value Function

🖒 Part 2

$$\mathcal{V}_{\pi,\sigma}(s) = \sum_{i \in M} \sum_{j \in N} \pi_s(i) \cdot \sigma_s(j) \cdot \left(R(s,i,j) + \gamma \sum_{s' \in S} T(s,i,j)(s') \cdot \mathcal{V}_{\pi,\sigma}(s') \right)$$

Equation for the Q-Function

🖒 Part 3

$$\mathcal{Q}_{\pi,\sigma}(s,i,j) = \mathcal{R}(s,i,j) + \gamma \sum_{s' \in S} \mathcal{T}(s,i,j)(s') \sum_{i' \in M} \sum_{j' \in N} \pi_{s'}(i') \cdot \sigma_{s'}(j') \cdot \mathcal{Q}_{\pi,\sigma}(s',i',j')$$

Equilibrium of a Stochastic Game

🖒 Maximin/minimax

• A stationary strategy π^* is an equilibrium strategy of the planner if

$$\max_{\pi}\min_{\sigma}\mathcal{V}_{\pi,\sigma}(s)=\min_{\sigma}\mathcal{V}_{\pi^*,\sigma}(s) \qquad ext{for every } s\in\mathcal{S},$$

and analogously for the adversary

• Every stochastic game has an equilibrium (π^*, σ^*) in stationary strategies

Quality/Value Functions

 ${\it C\!\!P}$ For equilibrium strategies (π^*,σ^*)

Define:

$$\begin{aligned} \mathcal{Q}_*(s,i,j) &= \mathit{R}(s,i,j) + \gamma \sum_{s' \in \mathcal{S}} \mathit{T}(s,i,j)(s') \cdot \mathcal{V}_*(s') \\ \mathcal{V}_*(s) &= \mathcal{V}_{\pi^*,\sigma^*}(s) \end{aligned}$$

How to obtain the estimate of $\mathcal{V}_*(s)$?

Value Iteration

🖒 A variant for stochastic games

$$\mathcal{Q}(\boldsymbol{s}, i, j) \coloneqq \boldsymbol{R}(\boldsymbol{s}, i, j) + \gamma \sum_{\boldsymbol{s}' \in S} \boldsymbol{T}(\boldsymbol{s}, i, j)(\boldsymbol{s}') \cdot \boldsymbol{\mathcal{V}}(\boldsymbol{s}')$$
(1)
$$\mathcal{V}(\boldsymbol{s}) \coloneqq \max_{\pi_{\boldsymbol{s}} \in \Delta_{\boldsymbol{M}}} \min_{j \in \boldsymbol{N}} \sum_{i \in \boldsymbol{M}} \pi_{\boldsymbol{s}}(i) \cdot \boldsymbol{\mathcal{Q}}(\boldsymbol{s}, i, j)$$
(2)

- Initialize \mathcal{V} arbitrarily
- Update (1)-(2) iteratively

Ç

• This procedure converges to \mathcal{V}_{*} (Shapley, 1953)

Minimax Q-learning

C Reinforcement learning approach

• Set a learning rate $\alpha \in (0,1)$

$$\mathcal{Q}(\boldsymbol{s}, \boldsymbol{i}, \boldsymbol{j}) \coloneqq (1 - \alpha) \mathcal{Q}(\boldsymbol{s}, \boldsymbol{i}, \boldsymbol{j}) + \alpha(\boldsymbol{R}(\boldsymbol{s}, \boldsymbol{i}, \boldsymbol{j}) + \gamma \mathcal{V}(\boldsymbol{s}))$$
(3)
$$\mathcal{V}(\boldsymbol{s}) \coloneqq \max_{\pi_{\boldsymbol{s}} \in \Delta_{\boldsymbol{M}}} \min_{\boldsymbol{j} \in \boldsymbol{N}} \sum_{\boldsymbol{i} \in \boldsymbol{M}} \pi_{\boldsymbol{s}}(\boldsymbol{i}) \cdot \mathcal{Q}(\boldsymbol{s}, \boldsymbol{i}, \boldsymbol{j})$$
(4)

- Initialize ${\mathcal V}$ and ${\mathcal Q}$ arbitrarily
- Update (3)-(4) iteratively

Examples

$\ref{eq:soccer}$ Soccer (Littman, 1994) with $\gamma=0.9$

- 780 states (players' position and ball possession)
- 5 actions (N, S, E, W, stand)
- Random change of ball possession and the action selection

Examples

🖒 Goofspiel (Flood, 1930s)

- Each player and the deck have one suit of cards numbered $1, \ldots, n$
- A card from the deck is bid on secretly
- The player with the highest card gets the corresponding reward
- Each player discards the card bid
- Repeat for *n* rounds

n	S	S imes A	Sizeof(π or Q)	V(det)	V(random)
4	692	15150	\sim 59KB	-2	-2.5
8	$3 imes 10^6$	$1 imes 10^7$	\sim 47MB	-20	-10.5
13	1×10^{11}	$7 imes 10^{11}$	\sim 2.5TB	-65	-28

References

- Bowling, Michael, and Manuela Veloso. "Scalable learning in stochastic games." AAAI Workshop on Game Theoretic and Decision Theoretic Agents. 2002.
- Littman, Michael L. 1994. Markov Games as a Framework for Multi-Agent Reinforcement Learning. *Machine Learning Proceedings*, 1994. https://doi.org/10.1016/b978-1-55860-335-6.50027-1.