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Two-Player Zero-Sum Games � Summary

What we have learned

• Matrix games capture the strategic

interaction between two players

• Their solutions are found by LP

� Efficient algorithms

� Single stage games

Where we will go

• Dynamic games

� Iterative interaction between players

in the changing environment

� Scalability issues
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Repeating Zero-Sum Games � Or making MDPs competitive?

P

E

• Pursuer P tries to capture evader E

• Stochastic policy describes the mixed

strategy of each player in every state

• We are seeking a common
generalization of

• repeated TPZS games and
• Markov decision processes (MDPs)
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Stochastic Game � Two-Player Zero-Sum

1 Players are the planner and the adversary

2 Finite action sets M and N for the planner and the adversary, respectively

3 Finite set S of states

4 Transition function

T : S × M × N → ∆S

where T(s, i, j) is a probability distribution on S

5 Reward function

R : S × M × N → R

where R(s, i, j) is a reward to the planner
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How to Play a Stochastic Game? � A sequence of zero-sum stage games

An initial state is s0 ∈ S. At each stage τ = 0, 1, 2, . . . :

1 The players choose (iτ , jτ ) ∈ M × N observing the history of past states/actions

2 The planner receives R(sτ , iτ , jτ ) from the adversary

3 A new state sτ+1 ∈ S is determined randomly according to T(sτ , iτ , jτ )

How to aggregate the rewards over an infinite history?
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Discounting � The importance of future rewards

• A discount factor is a number γ ∈ (0, 1)

• The discounted reward of planner over an infinite history (s0, i0, j0, . . . ) is

∞∑
τ=0

γτ R(sτ , iτ , jτ ) = R(s0, i0, j0) + γR(s1, i1, j1) + γ2R(s2, i2, j2) + · · ·
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Strategies � For stochastic games

At stage τ the players observe an entire history

hτ := (s0, i0, j0, . . . , sτ , iτ , jτ ).

A strategy of the planner is

1 behavioral if it is a mapping hτ 7→ p ∈ ∆M from histories to mixed actions

2 Markov if it is a behavioral strategy depending only on the current state sτ

3 stationary if it is a Markov strategy not depending on time τ
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Stationary Strategies � Special cases

A stationary strategy for the

planner/adversary is a mapping

π : S → ∆M and σ : S → ∆N,

respectively.

� If |S| = 1, then we obtain

a two-person zero-sum game

and the concept of mixed strategy

� If |N| = 1, then we get an MDP with

the concept of stochastic policy

How to evaluate stationary strategies?
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Value/Quality Function � (sτ ), (iτ ), (jτ ) are stochastic processes

with respect to T, π, σ

• The value function is the expected reward starting from state s and then

following strategies π and σ,

Vπ,σ(s) = E

( ∞∑
τ=0

γτR(sτ , iτ , jτ )

)
, s0 = s.

• The Q-function is the expected reward starting from state s, taking actions i and

j, and then following strategies π and σ,

Qπ,σ(s, i, j) = E

( ∞∑
τ=0

γτR(sτ , iτ , jτ )

)
, s0 = s, i0 = i, j0 = j.
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Expectation Equations � Part 1

Vπ,σ(s) =
∑
i∈M

∑
j∈N

πs(i) · σs(j) · Qπ,σ(s, i, j)

Qπ,σ(s, i, j) = R(s, i, j) + γ
∑
s′∈S

T(s, i, j)(s′) · Vπ,σ(s
′)
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Equation for the Value Function � Part 2

Vπ,σ(s) =
∑
i∈M

∑
j∈N

πs(i) · σs(j) ·

(
R(s, i, j) + γ

∑
s′∈S

T(s, i, j)(s′) · Vπ,σ(s
′)

)
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Equation for the Q-Function � Part 3

Qπ,σ(s, i, j) = R(s, i, j) + γ
∑
s′∈S

T(s, i, j)(s′)
∑
i′∈M

∑
j′∈N

πs′(i
′) · σs′(j′) · Qπ,σ(s

′, i′, j′)
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Equilibrium of a Stochastic Game � Maximin/minimax

• A stationary strategy π∗ is an equilibrium strategy of the planner if

max
π

min
σ

Vπ,σ(s) = min
σ

Vπ∗,σ(s) for every s ∈ S,

and analogously for the adversary

• Every stochastic game has an equilibrium (π∗, σ∗) in stationary strategies
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Quality/Value Functions � For equilibrium strategies (π∗, σ∗)

Define:

Q∗(s, i, j) = R(s, i, j) + γ
∑
s′∈S

T(s, i, j)(s′) · V∗(s
′)

V∗(s) = Vπ∗,σ∗(s)

How to obtain the estimate of V∗(s)?
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Value Iteration � A variant for stochastic games

Q(s, i, j) := R(s, i, j) + γ
∑
s′∈S

T(s, i, j)(s′) · V(s′) (1)

V(s) := max
πs∈∆M

min
j∈N

∑
i∈M

πs(i) · Q(s, i, j) (2)

• Initialize V arbitrarily

• Update (1)–(2) iteratively

• This procedure converges to V∗ (Shapley, 1953)
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Minimax Q-learning � Reinforcement learning approach

• Set a learning rate α ∈ (0, 1)

Q(s, i, j) := (1− α)Q(s, i, j) + α(R(s, i, j) + γV(s)) (3)

V(s) := max
πs∈∆M

min
j∈N

∑
i∈M

πs(i) · Q(s, i, j) (4)

• Initialize V andQ arbitrarily

• Update (3)–(4) iteratively
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Examples � Soccer (Littman, 1994) with γ = 0.9

• 780 states (players’ position and ball possession)

• 5 actions (N, S, E, W, stand)

• Random change of ball possession and the action selection

Stochastic Games 18



Examples � Goofspiel (Flood, 1930s)

• Each player and the deck have one suit of cards numbered 1, . . . , n

• A card from the deck is bid on secretly

• The player with the highest card gets the corresponding reward

• Each player discards the card bid

• Repeat for n rounds
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