Randomized Sampling-based Motion Planning Methods

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

Lecture 08

B4M36UIR - Artificial Intelligence in Robotics

Overview of the Lecture

- Part 1 - Randomized Sampling-based Motion Planning Methods Sampling-Based Methods
- Probabilistic Road Map (PRM)
- Characteristics
- Rapidly Exploring Random Tree (RRT)
- Part 2 - Optimal Sampling-based Motion Planning Methods - Optimal Motion Planners
- Rapidly-exploring Random Graph (RRG)
- Informed Sampling-based Methods
- Part 3 - Multi-Goal Motion Planning (MGMP)
- Multi-Goal Motion Planning
- Physical Orienteering Problem (POP)

Part 1
Part 1 - Sampling-based Motion Planning

Sampling Based Methods
Probabilisicic Road Map (PRM)

Charactersitics
Rapidly Exploring Random Tree (RRT)

Probabilistic Roadmaps

A discrete representation of the continuous \mathcal{C}-space generated by randomly sampled configurations in $\mathcal{C}_{\text {free }}$ that are connected into a graph

- Nodes of the graph represent admissible configurations of the robot.
- Edges represent a feasible path (trajectory) between the particular configurations.

Having the graph, the final path (trajectory) can be found by a graph search technique
(Randomized) Sampling-based Motion Planning

- It uses an explicit representation of the obstacles in \mathcal{C}-space.
- A "black-box" function is used to evaluate if a configuration q is a collision-free using geometrica models of the objects (robot and environment),
2D or 3D shapes of the robot and environment can be represented as sets of triangles - tesselated
models.
- Collision test is then a test of for the intersection of the triangles.
Colision free configurations form a discrete representation of $\mathcal{C}_{\text {free }}$.

Configurations in $\mathcal{C}_{\text {free }}$ can be sampled randomly and connected to a (probabilistic) roadmap
Rather than the full completeness they provide probabilistic completeness or resolution completeness. It is probabilisticaly complete if for increasing number of samples, an admissible solution would be found (if exists). /Rets

Multi-Query strategy is to create a roadmap that can be used for several queries.

- Generate a single roadmap that is then used for repeated planning queries.
- An representative technique is Probabilistic RoadMap (PRM).

Single-Query strategy is an incremental approach.

- For each planning problem, it constructs a new roadmap to characterize the subspace of \mathcal{C}-space that is relevant to the problem
- Rapidly-exploring Random Tree - RRT;

LaValle, 1998

- Expansive-Space Tree - EST;

Hsu et al., 1997

- Sampling-based Roadmap of Trees - SRT. Plaky appoaches. al., 2005

Multi-Query Strategy

Build a roadmap (graph) representing the environment.

Learning phase

1.1 Sample n points in $\mathcal{C}_{\text {fre }}$
1.2 Connect the random configurations using a local planner.
2. Query phase
2.1 Connect start and goal configurations with the PRM.
t Using a local planner.
2.2 Use the graph search to find the path.

Probabilistic Roadmaps for Path Planning in High Dimensional Configuration Spaces

 Lydia E. Kauraki and Petr Svestka and Jean-Claude Latombe and Mark|EEE Transactions on Robotics and Automation, 12(4):566-580, 1996.

First planner that demonstrates ability to solve general planning problems in more than 4.5 dimensions.
Sampling:Based Methods Probabisistic Road Map (PRin

PRM Construction
\#2 Random configuration

\#5 Query configurations

\#3 Connecting samples
\#4 Connected roadmap

\#6 Final found path

Practical PRM
Rapidly Exploring Random Tree (RRT)

Incremental construction

- Connect nodes in a radius r.
- Local planner tests collisions up to selected resolution δ.
- Path can be found by Dijkstra's algorithm.

$$
\begin{aligned}
& \text { What are the properties of the PRM algorithm? } \\
& \text { We need a couple of more formalisms. }
\end{aligned}
$$

$$
\text { Probabilistic Completeness } 1 / 2
$$

Probabilistic Completeness 2/2
An algorithm $\mathcal{A L G}$ is probabilistically complete if, for any robustly feasible path planning problem $\mathcal{P}=\left(\mathcal{C}_{\text {free }}, q_{\text {init }}, \mathcal{Q}_{\text {goal }}\right)$,

$\lim _{n \rightarrow \infty} \operatorname{Pr}(\mathcal{A L G}$ returns a solution to $\mathcal{P})=1$

- It is a "relaxed" notion of the completeness.
- Applicable only to problems with a robust solution.

```
\(C_{\text {obs }}\)
```

${ }^{9}$ (-) $\begin{aligned} & \text {-interior state }\end{aligned}$
$\operatorname{int}_{\delta}\left(C_{\text {free }}\right)$

Path Planning Problem Formulation

- Path planning problem can be defined by a triplet

$$
\mathcal{P}=\left(\mathcal{C}_{\text {free }}, q_{\text {init }}, \mathcal{Q}_{\text {goal }}\right) \text {, where }
$$

- $\mathcal{C}_{\text {free }}=\mathrm{cl}\left(\mathcal{C} \backslash \mathcal{C}_{\text {obs }}\right), \mathcal{C}=(0,1)^{d}$, for $d \in \mathbb{N}, d \geq 2$;
- qinit $\in \mathcal{C}_{\text {free }}$ is the initial configuration (condition);
- $\mathcal{Q}_{\text {goal }}$ is the goal region defined as an open subspace of $\mathcal{C}_{\text {free }}$
- Function $\pi:[0,1] \rightarrow \mathbb{R}^{d}$ of bounded variation is called:
- path - if it is continuous,
- collision-free path - if it is a path and $\pi(\tau) \in \mathcal{C}_{\text {free }}$ for $\tau \in[0,1]$;
- feasible - if it is a collision-free path, and $\pi(0)=q_{\text {init }}$ and $\pi(1) \in \mathrm{cl}\left(\mathcal{Q}_{\text {goal }}\right)$.
- A function π with total variation $\operatorname{TV}(\pi)<\infty$ is said to have bounded variation, where $\operatorname{TV}(\pi)$ is the

$$
\operatorname{TV}(\pi)=\sup _{\left\{n \in \mathbb{N}, 0=\tau_{0}<\tau_{1}<\ldots<\tau_{n}=s\right\}} \sum_{i=1}^{n}\left|\pi\left(\tau_{i}\right)-\pi\left(\tau_{i-1}\right)\right| .
$$

- Total variation $\operatorname{TV}(\pi)$ is de facto a path length.

Path Planning Problem

- Feasible path planning

For a path planning problem ($\left.\mathcal{C}_{\text {free }}, q_{\text {init }}, \mathcal{Q}_{\text {goal }}\right)$:

- Find a feasible path $\pi:[0,1] \rightarrow \mathcal{C}_{\text {free }}$ such that $\pi(0)=q_{\text {init }}$ and $\pi(1) \in \mathrm{cl}\left(\mathcal{Q}_{\text {goal }}\right)$, if such path exists;
- Report failure if no such path exist
- Optimal path planning
- Find a feasible path $\boldsymbol{*}^{*}$ a cost function $c: \Sigma \rightarrow \mathbb{R}>0$
- Report failure if no such sach that $c\left(\pi^{*}\right)=\min \{c(\pi): \pi$ is feasible $\}$;

The cost function is assumed to be monotonic and bounded
There exists k_{c} such that $c(\pi) \leq k_{c}$ TV (π.

Asymptotic Optimality 1/4 - Homotopy

Asymptotic optimality relies on a notion of weak δ-clearance.
Notice, we use strong δ-clearance for probabilistic completeness.
We need to describe possibly improving paths (during the planning)

- Function $\psi:[0,1] \rightarrow \mathcal{C}_{\text {free }}$ is called homotopy, if $\psi(0)=\pi_{1}$ and $\psi(1)=\pi_{2}$ and $\psi(\tau)$ is collision-free path for all $\tau \in[0,1]$.
- A collision-free path π_{1} is homotopic to π_{2} if there exists homotopy function ψ.

$$
\text { A path homotopic to } \pi \text { can be continuously transformed to } \pi \text { through } C_{\text {free }}
$$

First, we need robustly feasible path planning problem $\left(\mathcal{C}_{\text {free }}, q_{\text {init }}, \mathcal{Q}_{\text {goal }}\right)$.

- ($\left.\mathcal{C}_{\text {free }}, q_{\text {init }}, \mathcal{Q}_{\text {goal }}\right)$ is robustly feasible if a solution exists and it is a feasible path with
$\left(\mathcal{C}_{\text {free }}, q_{\text {init }}, \mathcal{Q}_{\text {goal }}\right)$ is robustly
strong δ-clearance, for $\delta>0$.
- $q \in \mathcal{C}_{\text {free }}$ is δ-interior state of $\mathcal{C}_{\text {free }}$ if the closed bal
a
- δ-interior of $\mathcal{C}_{\text {free }}$ is int $\left(\mathcal{C}_{\text {free }}\right)=\left\{\boldsymbol{\mathcal { C }} \in \mathcal{C}_{\text {free }} \mathcal{B}_{/, \delta} \subseteq\right.$ A collection of all δ-interior states.
- A collision free path π has strong δ-clearance,
Sampling: Based Methods

Asymptotic Optimality $2 / 4$ - Weak δ-clearance

- A collision-free path $\pi:[0, s] \rightarrow \mathcal{C}_{\text {free }}$ has weak δ-clearance if there exists a path π^{\prime} that has strong δ-clearance and homotopy ψ with $\psi(0)=\pi, \psi(1)=\pi^{\prime}$, and for all $\alpha \in(0,1]$ there exists $\delta_{\alpha}>0$ such that $\psi(\alpha)$ has strong δ-clearance.

Weak δ-clearance does not require points along a path to be at least Weak δ-clearance does not requile
a distance δ away from obstacles.
$\operatorname{int}_{\delta}\left(C_{\text {free }}\right)$

Asymptotic Optimality 3/4-Robust Optimal Solution

- Asymptotic optimality is applicable with a robust optimal solution that can be obtained as a limit of robust (non-optimal) solutions.
- A collision-free path π^{*} is robust optimal solution if it has weak δ-clearance and for any sequence of collision free paths $\left\{\pi_{n}\right\}_{n \in \mathbb{N}}, \pi_{n} \in \mathcal{C}_{\text {free }}$ such that $\lim _{n \rightarrow \infty} \pi_{n}=\pi^{*}$,

$$
\lim _{n \rightarrow \infty} c\left(\pi_{n}\right)=c\left(\pi^{*}\right) .
$$

There exists a path with strong δ-c
path and π^{*} is of the lowest cost. Ceak δ-clearance implies an existence of the strong δ-clearance path within the some homotopy, and thus robustly feasible solution problem.

Thus, it lies the probilistic completenes

Asymptotic Optimality 4/4 - Asymptotically Optimal Algorithm

An algorithm $\mathcal{A L G}$ is asymptotically optimal if, for any path planning problem $\mathcal{P}=$ $\left(\mathcal{C}_{\text {free }}, q_{\text {init }}, \mathcal{Q}_{\text {goal }}\right)$ and cost function c that admits a robust optimal solution with the finite cost c^{*} such that

$$
\operatorname{Pr}\left(\left\{\lim _{i \rightarrow \infty} Y_{i}^{A \mathcal{L G}}=c^{*}\right\}\right)=1
$$

- $Y_{\mathcal{A}}^{\mathcal{A C G}}$ is the extended random variable corresponding to the minimum-cost solution included in the graph returned by $\mathcal{A L G}$ at the end of the iteration i.

- Completeness for the standard PRM has not been provided when it was introduced.
- A simplified version of the PRM (called sPRM) has been most studied.
- sPRM is probabilistically complete.

What are the differences between PRM and sPRM?

PRM vs. simplified PRM (sPRM)
$\frac{\overline{\text { Algorithm 1: PRM }}}{\text { Input: } q_{\text {int }} \text { the ne number of samples } n \text {, and radius } r}$

Ingut: $q_{\text {qitit }}$ the number of samples n, and radius r
Output: r. \quad. $-G=(V, E)$

- (sPRM)
$\frac{\text { Algorithm 2: sPRM }}{\text { Input: } q_{\text {nit }} \text { the number of samples } n \text {, and }} \begin{aligned} & \text { radis } r\end{aligned}$
PRM - Properties
- sPRM (simplified PRM):
- Probabilistically complete and asymptotically optimal
- Probabilistically complete and asymptotically

E Query complexity can be bounded by $O\left(n^{2}\right)$.

- Space complexity can be bounded by $O\left(n^{2}\right)$.
Heuristics practically used are not necessarily probabilistic complete and asymptotically optimal.
- k-nearest sPRM is not probabilistically complete for $k=1$.
- Variable radius sPRM is not probabilistically complete; with the radius $r(n)=\gamma n^{-\frac{1}{d}}$.

See Karaman and Frazzoli: Sampling-based Algorithms for Optimal Motion Planning, IJRR 201

PRM algorithm

It has very simple implementation.

+ It provides completeness (for sPRM)
Differential constraints (car-like vehicles) are not straightforward (but possible).
Faigl, 2022
$V \leftarrow-\theta_{i} E+\square ;$
for $i=0, \ldots, n$ do

return $G=(V, E)$; \qquad

Comments about Random Sampling 2/2

- A solution can be found using only a few samples.

$\frac{\text { Output: } P R M-G=(V, E)}{V \leftarrow\left\{q_{\text {mit }}\right\} \cup\{\text { Samplefree }\}=1, \ldots, \ldots,-1 ; E \leftarrow \emptyset ;}$

foreach $v \in V$ do
$u \in N$ doar $(G=(V, E), v, r) \backslash\{v\} ;$

return $G=(V, E)$:
in the same con-

- nected component are allowed.
- The radius r is fixed and can be relatively long;

Several ways for the set U of vertices to connect them can improved the performance, such as k-nearest
eighbors to v; or variable connection radius r as a function of n at the cost of lost of asymptotical optimality neighbors to vior or variable connection radius r as a function of n at the cost of lost of asymptotical optimality
or even probabilistic completeness.

Comments about Random Sampling 1/2

- Different sampling strategies (distributions) may be applied

- Notice, one of the main issues of the randomized sampling-based approaches is the narrow passage.
- Several modifications of sampling-based strategies have been proposed in the last decades.
- Sampling strategies are important: Near obstacles; Narrow passages; Grid-based Uniform sampling must be carefully considered.

Naive sampling

RRT Algorithm

- Motivation is a single query and control-based path finding
- It incrementally builds a graph (tree) towards the goal area

Algorithm 3: Rapidly Exploring Random Tree (RRT)

Aput: $q_{\text {init. }}$ number of samples n Output: R Radmap $G=(V, E)$

$$
\begin{aligned}
& \begin{array}{l}
q_{\text {frand }} \leftarrow \text { Samplefree } \\
q_{\text {neerest }} \leftarrow \text { Nearest }\left(G=(V, E), q_{\text {rand }}\right) \\
q_{\text {new }} \leftarrow \text { Steer }\left(q_{\text {nearest }}, q_{\text {qand }}\right) ;
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& -L \leftarrow V \cup\left\{x_{\text {new }}\right\} ; E \leftarrow E \cup\left\{\left(X_{\text {nearest }}, x_{\text {new }}\right)\right\}:
\end{aligned}
$$

return $G=(V, E)$;
圁 Rapilly-exploring random trees: A new tool for path planning

Rapidly Exploring Random Tree (RRT)

Single-Query algorithm

- It incrementally builds a graph (tree) towards the goal area

It does not guarantee precise path to the goal configuration.

1. Start with the initial configuration q_{0}, which is a root of the constructed graph (tree)
2. Generate a new random configuration $q_{\text {new }}$ in $\mathcal{C}_{\text {free }}$.
3. Find the closest node $q_{\text {near }}$ to $q_{\text {new }}$ in the tree

$$
\begin{aligned}
& \text { qnew in the tree. } \\
& \text { KD-tre implementation like ANN or FLANN libraries can be utilized. }
\end{aligned}
$$

4. Extend $q_{\text {near }}$ towards $q_{\text {new. }} \begin{aligned} & \text { Extend the tree by a small step or using a direct control } u \in \mathcal{U} \text { that will move } \\ & \text { the robot to the position closest to } q_{\text {new a applied for } \delta \text {. }}\end{aligned}$
5. Go to Step 2 until the tree is within a sufficient distance from the goal configuration.

Or terminates after dedicated running time
ne Fais, 2022

Sampling Eased Methods
Properties of RRT Algorithms

- The RRT algorithm rapidly explores the space

Thew will more likely be generated in large, not yet covered parts (voroni bias).

- Allows considering kinodynamic/dynamic constraints (during the expansion).
- Can provide trajectory or a sequence of direct control commands for robot controllers.

A collision detection test is usually used as a "black-box."

- Similarly to PRM, RRT algorithms have poor performance in narrow passage problems RRT algorithms provide feasible paths.

$$
\begin{aligned}
& \text { It can be relatively far from an optimal solution; according to the } \\
& \text { length of the path) }
\end{aligned}
$$

Many variants of the RRT have been proposed in the literature.

RRT and Quality of Solution 2/2

- RRT does not satisfy a necessary condition for the asymptotic optimality.
- For $0<R<\inf _{q \in \mathcal{Q}_{g o d}}\left\|q-q_{\text {initit }}\right\|$, the event $\left\{\lim _{n \rightarrow \infty} Y_{n}^{R T T}=c^{*}\right\}$ occurs only if the k-th branch of the RRT contains vertices outside the R-ball centered at $q_{\text {init }}$ for infinitely many k.

See Appendix B in Karaman and Frazzoli, 2011. - It is required the root node will have infinitely many subtrees that extend at least a distance ϵ away from $q_{\text {init }}$
The sub-optimality is caused by disallowing new better paths to be discovered.

Rapidly-exploring Random Graph (RRG)

 Algorithm 4: Rapidly-exploring Random Graph (RRG)Input: $q_{\text {init, the }}$ the number of samples n
Output: $G=(V, E)$
$V \leftarrow \emptyset ; E \leftarrow \emptyset$
for $i=0 \ldots \ldots n d$
for $i=0, \ldots, n$ do
$q_{\text {rand }} \leftarrow$ SampleFrest
$q_{\text {rand }} \leftarrow$ Samplefree
$q_{\text {neerest }} \leftarrow \operatorname{Nearest}\left(G=(V, E), q_{\text {rand }}\right)$
$q_{\text {new }} \leftarrow S$ Ster $\left(q_{\text {nearest }}, q_{\text {rand }}\right)$
if Collisionfree $\left(q_{\text {nearst }}, q_{\text {new }}\right)$ then
$\left.\mathcal{Q}_{\text {near }} \leftarrow \operatorname{Near}\left(G=(V, E), q_{\text {new }}, \min \left\{\gamma_{\text {RRG }}(\log (\operatorname{card}(V)) / \operatorname{card}(V))^{1 / d}, \eta\right\}\right)\right)$ $\mathcal{Q}_{\text {near }} \leftarrow \operatorname{Near}\left(G=(V, E), q_{\text {new }}, \min \left\{\gamma_{R R G}(\log (\operatorname{card}(V)) / \operatorname{card}\right.\right.$
$V \leftarrow V \cup\left\{q_{\text {new }}\right\} ; E \leftarrow E \cup\left\{\left(q_{\text {neerest }}, q_{\text {new }}\right),\left(q_{\text {new }}, q_{\text {nearest }}\right)\right\}$ foreach $\left.q_{\text {near }} \in \mathcal{Q}_{\text {near }}\right\}$
$\left.\stackrel{\text { if CollisionFreeer }}{\text { (qnear }}, q_{\text {new }}\right)$ then
) then

$$
\left.\left.e_{\text {en },}^{n}, q_{\text {near }}\right)\right\} \quad / / \text { connect } Q_{\text {neer }} \text { with } q_{\text {newer }} \text {. }
$$

eturn $G=(V, E)$

- At each iteration, RRG tries to connect new sample to all vertices in the r_{n} ball centered at it.
The ball of radius

$$
r(\operatorname{card}(V))=\min \left\{\gamma_{R R G}\left(\frac{\log (\operatorname{card}(V))}{\operatorname{card}(V)}\right)^{1 / d}, \eta\right\}
$$

where

- η is the constant of the local steering function;
- $\gamma_{\text {RRG }}>\gamma_{R R G}^{*}=2(1+1 / d)^{1 / d}\left(\mu\left(\mathcal{C}_{\text {free }}\right) / \zeta_{d}\right)^{1 / d ;} ;$
$\begin{aligned} & \gamma_{\text {RRG }}>\gamma_{\text {RRG }}^{*}=2(1+1 / d) \\ &-d \text { dimension of the space; }\end{aligned}$
d - dimension of the space;
$\mu\left(\mathcal{C}_{\text {free }}\right)$-Lebesgue measure of the obstacle-free space;
$\mu\left(\mathcal{C}_{\text {free }}\right)$ - Lebesgue measure of the obstacle-free space;
ζ_{d}-volume of the unit ball in d-dimensional Euclidean space,
- The connection radius decreases with n.

The rate of decay \approx the average number of connections attempted is proportional to $\log (n)$

Other Variants of the Optimal Motion Planning

- PRM* follows the standard PRM algorithm where connections are attempted between roadmap vertices that are the within connection radius r as the function of n :
Asymptotically optimal
Complexity is $O(\log n)$.
(per one sample)
$r(n)=\gamma_{\text {PRM }}(\log (n) / n)^{1 / d}$.
- RRT* is a modification of the RRG, where cycles are avoided.
- Computational efficiency and optimality:
- It attempts a connection to $\Theta(\log n)$ nodes at each iteration;

Reduce volume of the "connection" ball as $\log (n) / n$
In average
Increase the number of connections as $\log (n)$.

A tree rod ans it is a tree version of the RRC
A tree roadmap allows considering non-holonomic dynamics and k indynamic constraits. It is basically the RRG with "rerouting" the tree when a better path is discovered.
n Fais, 2022

RRT, $n=250$
Rapilly-explofin

Example of Solution 1/3

RRT* $n=250$

Example of Solution 3/3
Overview of Randomized Sampling-based Algorithms
Example of Solution 2/3

RRT, $n=500$

RRT*, $n=500$
RRT, $n=2500$

RRT* $n=10000$

RRT, $n=20000$

RRT*, $n=20000$

Improved Sampling-based Motion Planner

- Although asymptotically optimal sampling-based motion planners such as RRT* or RRG may provide high-quality or even optimal solutions to the complex problem, their performance in simple scenarios (such as 2 D) is is relatively poor \qquad
The computational performance can be improved similarly as for the RRT
- Using goal biasing, supporting sampling in narrow passages, multi-tree growing (Bidirectional RRT)
- The general idea of improvements is based on informing the sampling process.

Many modifications of the algorithms exists, selected representative modifications are

- Informed RRT*
- Batch Informed Trees (BIT*)
- Regionally Accelerated BIT* (RABIT*)

Informed RRT

- Focused RRT* search to increase the convergence rate - Use Euclidean distance as an admissible heuristic
- Ellipsoidal informed subset - the current best solution $c_{\text {best }}$

> Batch Informed Trees (BIT*)

Combining RGG (Random Geometric Graph) with the heuristic in incremental graph search technique, e.g., Lifelong Planning A* (LPA*)
Batches of samples - a new batch starts with denser implicit RGG

Covariant Hamiltonian Optimization for Motion Planning (CHOMP) - Trajectory optimization based on functional gradient techniques to improve the trajectory with trade-off between trajectory smoothness and obstacle avoidance.

- Trajectory function $\pi:[0, T] \rightarrow \mathcal{C}$ with a cost function $\mathcal{U}: \Pi \rightarrow \mathbb{R}^{+}$
- The trajectory optimization $\pi^{*}=\operatorname{argmin}_{\pi \in \Pi} \mathcal{U}(\pi)$, s.t. $\pi(0)=q_{\text {init }}$ and $\pi(T)=q_{\text {goal }}$
- CHOMP instantiates functional gradient descent for the cost

$$
\begin{equation*}
\mathcal{U}(\pi)=\mathcal{U}_{\text {smooth }}(\pi)+\lambda \mathcal{U}_{\text {obs }}(\pi) . \tag{1}
\end{equation*}
$$

- Smoothness cost can be defined as $\mathcal{U}_{\text {smooth }}(\pi)=\frac{1}{2} \int_{0}^{T}\left\|\pi^{\prime}(t)\right\|^{2} d t$.
- Obstacle cos

$$
\begin{equation*}
\mathcal{U}_{\mathrm{oss}}(\pi)=\int_{t} \int_{\mathcal{A}} c\left(\psi_{\mathcal{A}}(\pi(t))\right) \cdot\left\|\frac{d}{d t} \psi_{\mathcal{A}}(\pi(t))\right\| d a d t . \tag{2}
\end{equation*}
$$

- The cost function in $\mathcal{W}, c: \mathcal{W} \rightarrow \mathbb{R}$ that uses signed distance field to computed distance to the closes obstacle
- Computing the cost for each point of the trajectory, thus integral over time.

Regionally Accelerated BIT* (RABIT*)
Use local optimizer with the BIT* to improve the convergence speed.
Local search Covariant Hamiltonian Optimization for Motion Planning (CHOMP) is utilized to

Overview of Improved Algorithm Onter

	Appractes	Constrints	Plamines \ode	Kinematic Moded	Smplifes Srates	Merrie
	1. Rerrom	Holomenic	omine	Poomt	Unitom	Eavilum
	2. Anyimer RrP 0 (1)	Nom.tobomic	Online	Dobincar	Unitom	
		Holomemic	omine	Rigut day	Loant bis	Conlbised
		Holomemic	omine	Roporie Am	Unifom	Cumblate Euxidem
	$\frac{5}{5 \cdot \mathrm{RrT} \text { Psmant [3] }}$	Holomeric	Ofline	Point	meligent	Emeridem
		OHMoumemic	Omine	Point	Unitom	Eubidem
		Holomemic	omine	Point	Unitom	Euplidem
		Nor.hobenomic	omine	Curibeemd UAV	Unitom	${ }^{*}$ * Heusisic
		Nom.tobencmic	omine	uav	Unitem	
	10. mmemad Rrt Pa4	Holomemic	omine	Point	Divers Sumpling	Euvidem
		Holomemic	omine	Pout	melligem	Grualy texiliden
	(12 Dir.RT [[9]	Nom.tobenomic	Ofince	Carilic	H.phid	Angelare Eucitian
		Nom.tobenomic	Onine	UAV	Loenl Smpling	$1 *$ Henarice
	$\frac{14.4 \text { crecses }^{5}[4] 3}{15}$	Nom.homomic	Offine	Carilic	Unifem t Loal Plaming	Amplaret Euxiden
		1 Nombobememic	Onime	Atuesomescar	Tosasegesmplies	Weistaded furitem
	10. carrt ${ }^{(s)}$	Nom.tobomemic	Oonilie	Hummed	Unitom	MV Leary Cors
	17. prpr P4s] $^{\text {a }}$	Nom.oromomic	omine	p3.0x	Unitom	Euelicmem

Motion Planning for Dynamic Environments - RRT×

- Refinement and repair of the search graph during the navigation (quick rewiring of the shortest path).

Multi-Goal Motion Planning

- In the previous cases, we consider existing roadmap or relatively "simple" collision free (shortest) paths in the polygonal domain
- However, determination of the collision-free path in high dimensional configuration space (C space) can be a challenging problem itself.
Therefore, we can generalize the MTP to multi-goal motion planning (MGMP) considerin
motion planners using the notion of C-space for avoiding collisions.
Part 3 - Multi-goal Motion Planning (MGMP)

MGMP - Existing Approches

- Determining all paths connecting any two locations $g_{i}, g_{j} \in \mathcal{G}$ is usually very computationally demanding. - Considering Euclidean distance as an approximation in the solution of the TSP as the Minimum Spaning Tree
(MST) - Edges in the MST are iteratively refined using optimal motion planer until all edges represent

- Steering RRG roadmap expansion by unsupervised learning for the TSP.
- Steering PRM* expansion using VNS-based routing planning in the Physical Orienteering Problem (POP).
- The working environment $\mathcal{W} \subset \mathbb{R}^{3}$ is represented as a set of obstacles $\mathcal{O} \subset \mathcal{W}$ and the robot configuration space \mathcal{C} describes all possible configurations of the robot in \mathcal{W}.
- For $q \in \mathcal{C}$, the robot body $\mathcal{A}(q)$ at q is collision free if $\mathcal{A}(q) \cap \mathcal{O}=\emptyset$ and all collision free configurations are denoted as $\mathcal{C}_{\text {fre }}$
- Set of n goal locations is $\mathcal{G}=\left(g_{1}, \ldots, g_{n}\right), g_{i} \in \mathcal{C}_{\text {free }}$
- Collision free path from $q_{\text {start }}$ to $q_{\text {goal }}$ is $\kappa:[0,1] \rightarrow \mathcal{C}_{\text {free }}$ with $\kappa(0)=q_{\text {start }}$ and $d\left(\kappa(1), q_{\text {end }}\right)<\epsilon$, for an admissible distance ϵ.
- Multi-goal path τ is admissible if $\tau:[0,1] \rightarrow \mathcal{C}_{\text {free }}, \tau(0)=\tau(1)$ and there are n points such that $0 \leq t_{1} \leq t_{2} \leq \ldots \leq t_{n}, d\left(\tau\left(t_{i}\right), v_{i}\right)<\epsilon$, and $\bigcup_{1<i \leq n} v_{i}=\mathcal{G}$.
- The problem is to find the path τ^{*} for a cost function c such that $c\left(\tau^{*}\right)=$ $\min \{c(\tau) \mid \tau$ is admissible multi-goal path $\}$

Multi-Goal Trajectory Planning with Limited Travel Budget Physical Orienteering Problem (POP) - Real Experimental Verification

Multi-Goal Trajectory Planning with Limited Travel Budget Physical Orienteering Problem (POP)

- Orienteering Problem (OP) in an environment with obstacles and
motion constraints of the data collecting vehicle.
- A combination of motion planning and routing problem with profits.
- VNS-PRM* - VNS-based routing and motion planning is ad-- dressed by PRM*.
- An initial low-dense roadmap is continuously expanded during the
VNSS-based POP optimization to shorten paths of promising solu-
tions.

Topics Discussed

Topics Discussed - Randomized Sampling-based Methods

- Single and multi-query approaches

Probabilistic Roadmap Method (PRM); Rapidly Exploring Random Tree (RRT).

Optimal sampling-based planning - Rapidly-exploring Random Graph (RRG)
Properties of the sampling-based motion planning algorithms:

- Path, collision-free path, feasible path;
- Probabilistic completeness, strong δ-clearance, robustly feasible path planning problem:
- Asymptotic otptimality, homototopy, weak δ-clearance, robust optimal solution;
- Improved randomized sampling-based methods
- Informed sampling - Informed RRT*; Improving by batches of samples and reusing previous searches using
- Improving local search strategy to improve convergence speed
- Multi-goal motion planning (MGMP) problems are further variants of the robotic TSP
- Next: Game Theory in Robotics

