| Randomized Sampling-based Motion Planning Methods<br>Jan Faigl<br>Department of Computer Science<br>Baculty of Electrical Engineering<br>Czech Technical University in Prague<br>Lecture 08<br>B4M36UIR – Artificial Intelligence in Robotics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Overview of the Lecture<br>Part 1 – Randomized Sampling-based Motion Planning Methods<br>Sampling-Based Methods<br>Probabilistic Road Map (PRM)<br>Characteristics<br>Rapidly Exploring Random Tree (RRT)<br>Part 2 – Optimal Sampling-based Motion Planning Methods<br>Optimal Motion Planners<br>Rapidly-exploring Random Graph (RRG)<br>Informed Sampling-based Methods<br>Part 3 – Multi-Goal Motion Planning (MGMP)<br>Multi-Goal Motion Planning<br>Physical Orienteering Problem (POP)                                                                                                                                                                                                                                                                                  | Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT) Part I Part 1 – Sampling-based Motion Planning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Jan Faigl, 2022         B4M36UIR – Lecture 08: Sampling-based Motion Planning         1 / 72           Sampling-Based Methods         Probabilistic Road Map (PRM)         Characteristics         Rapidly Exploring Random Tree (RRT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jan Faigl, 2022         B4M36UIR – Lecture 08: Sampling-based Motion Planning         2 / 72           Sampling-Based Methods         Probabilistic Road Map (PRM)         Characteristics         Rapidly Exploring Random Tree (RRT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jan Faigl, 2022         B4M36UIR – Lecture 08: Sampling-based Motion Planning         3 / 72           Sampling-Based Methods         Probabilistic Road Map (PRM)         Characteristics         Rapidly Exploring Random Tree (RRT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>(Randomized) Sampling-based Motion Planning</li> <li>t uses an explicit representation of the obstacles in <i>C-space</i>.</li> <li>A "black-box" function is used to evaluate if a configuration q is a collision-free using geometrical models of the objects (robot and environment).</li> <li>2D or 3D shapes of the robot and environment can be represented as sets of triangles – tesselated models.</li> <li>Collision test is then a test of for the intersection of the triangles.</li> <li>Collision free configurations form a discrete representation of C<sub>free</sub>.</li> <li>Configurations in C<sub>free</sub> can be sampled randomly and connected to a (probabilistic) roadmap.</li> <li>Rather than the full completeness they provide probabilistic completeness or resolution completeness. It is probabilisticy complete if for increasing number of samples, an admissible solution would be found (if exist).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Debabilistic Roadmaps</li> <li>A discrete representation of the continuous <i>C</i>-space generated by randomly sampled configurations in <i>C</i><sub>free</sub> that are connected into a graph.</li> <li>Nodes of the graph represent admissible configurations of the robot.</li> <li>Edges represent a feasible path (trajectory) between the particular configurations.</li> <li>Improve the part of the graph represent admissible configurations of the robot.</li> <li>The graph represent a feasible path (trajectory) between the particular configurations.</li> </ul>                                                                                                                                                                                    | <ul> <li>Incremental Sampling and Searching</li> <li>Single query sampling-based algorithms incrementally create a search graph (roadmap).</li> <li>Initialization – G(V, E) an undirected search graph, V may contain q<sub>start</sub>, q<sub>goal</sub> and/or other points in C<sub>free</sub>.</li> <li>Vertex selection method – choose a vertex q<sub>cur</sub> ∈ V for the expansion.</li> <li>Local planning method – for some q<sub>new</sub> ∈ C<sub>free</sub>, attempt to construct a path τ : [0, 1] → C<sub>free</sub> such that τ(0) = q<sub>cur</sub> and τ(1) = q<sub>new</sub>, τ must be checked to ensure it is collision free.</li> <li>If τ is not a collision-free, go to Step 2.</li> <li>Insert an edge in the graph – Insert τ into E as an edge from q<sub>cur</sub> to q<sub>new</sub> and insert q<sub>new</sub> to V if q<sub>new</sub> ∉ V. How to text q<sub>new</sub> is in V?</li> <li>Check for a solution – Determine if G encodes a solution by using a single search tree or graph search technique.</li> <li>Repeat Step 2 – iterate unless a solution has been found or a termination condition is satisfied.</li> <li>LaValle, S. M.: Planning Algorithms (2006), Chapter 5.4.</li> </ul> |
| Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Probabilistic Roadmap Strategies         Multi-Query strategy is to create a roadmap that can be used for several queries.         • Generate a single roadmap that is then used for repeated planning queries.         • An representative technique is Probabilistic RoadMap (PRM).         Marki, L., Svestka, P., Jatomke, JC., Overmar, M. H.B. Probabilistic Roadmaps for Path Planning in Right Dimensional Configuration Space, IEET Transactions on Robotics, 12(4):966–900, 1990.         Marki, L., Svestka, P., Latomke, JC., Wermark, M. B.B. Probabilistic Roadmaps for Path Planning in Right Dimensional Configuration Space, IEET Transactions on Robotics, 12(4):966–900, 1990.         Marki, D., Latomke, JC., Kurniawati, H.: On the Probabilistic Foundations of Probabilistic Roadmap Planning. The Transactions on Robotics, 12(4):966–900, 1990.         Single-Query strategy is an incremental approach.         • For each planning problem, it constructs a new roadmap to characterize the subspace of C-space that is relevant to the problem.         • Rapidly-exploring Random Tree – RRT;       LaValle, 1998         • Expansive-Space Tree – EST;       Hsu et al., 1997         • Sampling-based Roadmap of Trees – SRT.       A combination of multiple-query and single-query approaches. | Multi-Query Strategy         Build a roadmap (graph) representing the environment.         1. Learning phase         1.1 Sample n points in Cfree.         1.2 Connect the random configurations using a local planner.         2. Query phase         2.1 Connect start and goal configurations with the PRM.         t Using a local planner.         2.2 Use the graph search to find the path.         Image: Probabilistic Roadmaps for Path Planning in High Dimensional Configuration Spaces         Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H. Overmars, IEEE Transactions on Robotics and Automation, 12(4):566-580, 1996.         First planner that demonstrates ability to solve general planning problems in more than 4-5 dimensions. | #1 Given problem domain       #2 Random configuration       #3 Connecting samples         #4 Connected roadmap       #5 Query configuration       #6 Final found path         #5 Query configuration       #6 Final found path                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Jan Faigl, 2022 B4M36UIR - Lecture 08: Sampling-based Motion Planning 10 / 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jan Faigl, 2022 B4M36UIR – Lecture 08: Sampling-based Motion Planning 11 / 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Jan Faigi, 2022 B4M30UIK – Lecture 08: Sampling-based Motion Manning 8 / 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jan raig, 2022 B4M30UIK – Lecture U8: Sampling-based Motion Planning 10 / 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Jan Faigi, 2022 B4M30UIK – Lecture UK: Sampling-based Motion Planning 11 / 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |











