Multi-goal Planning

Jan Faigl

Department of Computer Science Faculty of Electrical Engineering Czech Technical University in Prague

Lecture 05

B4M36UIR - Artificial Intelligence in Robotics

 Part 1 – Multi-goal Planning Inspection Planning

Multi-goal Planning

■ Part 2 – Unsupervised Learning for Multi-goal Planning

Unsupervised Learning for Multi-goal Planning

■ TSPN in Multi-goal Planning with Localization Uncertainty

Example of Inspection Planning in Search Scenario

Periodically visit particular locations of the environment and return to the starting locations.

• Use available floor plans to guide the search, e.g., finding victims in search-and-rescue scenario.

Overview of the Lecture

Robotic Information Gathering in Inspection of Vessel's Propeller

• The planning problem is to determine a shortest inspection path for an Autonomous Underwater Vehicle (AUV) to inspect the vessel's propeller.

Englot, B., Hover, F.S.: *Three-dimensional coverage planning for a* International Journal of Robotics Research, 32(9–10):1048–1073, 2013.

Planning to Capture Areas of Interest using UAV

Determine a cost-efficient path from which a given set of target regions is covered.

- For each target region a subspace $S \subset \mathbb{R}^3$ from which the target can be covered is determined. S represents the neighborhood.
- We search for the best sequence of visits to the regions.
- The PRM is utilized to construct the planning roadmap (a graph). PRM - Probabilistic Roadmap Method - sampling-based motion planner, see lecture 8.
- The problem can be formulated as the Traveling Salesman Problem with Neighborhoods, as it is not necessary to visit exactly a single location to capture the area of interest.

Part I

Part 1 – Multi-goal Planning

Inspection Planning

- Inspection/coverage planning stands to determine a plan (path) to inspect/cover the given areas or point of interest.
- We can directly find inspection/coverage plan using
 - predefined covering patterns such as ox-plow motion;
 - a "general" path satisfying coverage constraints. Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robotics and Autonomous Systems. 61(12):1258-1276, 2013.
- Decoupled approach Locations to be visited are determined before path planning as the sensor placement problem.

Inspection Planning - "Continuous Sensing"

• If we do not prescribe a discrete set of sensing locations, we can formulate the problem as the Watchman route problem.

Given a map of the environment \mathcal{W} determine the shortest, closed, and collision-free path, from which the whole environment is covered by an omnidirectional sensor with the radius ρ .

B4M36UIR - Lecture 05: Multi-

Inspection Planning – Decoupled Approach 1. Determine sensing locations such that the whole environment would be inspected (seen) by

visiting them. It is Sampling design problem.

In the geometrical-based approach, a solution of the Art Gallery Problem

The problem is related to the sensor placement and sampling design.

2. Create a roadmap connecting the sensing location.

3. Find the inspection path visiting all the sensing locations as a solution of the multi-goal path planning (a solution of the robotic TSP).

Multi-Goal Planning

- Having a set of locations to be visited, determine the cost-efficient path to visit them. Locations where a robotic arm or mobile robot performs some task. The operation can be
- The problem is called robotic task sequencing problem for robotic manipulators.

■ The problem is also called Multi-goal Path Planning (MTP) problem or Multi-goal Planning (MGP). Also studied in its Multi-goal Motion Planning (MGMP) variant.

Determination the sequence of visits is a combinatorial optimization problem that can be formulated as the Traveling Salesman Problem (TSP). B4M36UIR - Lecture 05: Multi-goal Planning

Multi-Goal Path Planning (MTP)

■ The challenge is to determine the optimal sequence of the visits to the locations w.r.t. cost-

It consists of point-to-point path planning on how to reach one location from another.

Multi-goal planning problem is a problem how to visit the given set of locations.

efficient path to visit all the given locations.

Existing Approaches to the TSP

Given a set of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city.

- The TSP can be formulated for a graph G(V, E), where V denotes a set of locations (cities) and E represents edges connecting two cities with the associated travel cost c(distance), i.e., for each $v_i, v_i \in V$ there is an edge $e_{ii} \in E$, $e_{ii} = (v_i, v_i)$ with the cost
- If the associated cost of the edge (v_i, v_i) is the Euclidean distance $c_{ii} = |(v_i, v_i)|$, the problem is called the Euclidean TSP (ETSP).
- It is known, the TSP is NP-hard (its decision variant) and several algorithms can be found in literature.

MST-based Approximation Algorithm to the TSP

William J. Cook (2012) - In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation

Faigl. 2022

Multi-goal Planning

Exact solutions

Multi-goal Planning

Traveling Salesman Problem (TSP)

- Let S be a set of n sensor locations $S = \{s_1, \dots, s_n\}, s_i \in \mathbb{R}^2 \text{ and } c(s_i, s_i) \text{ is a cost of travel}$ from s: to s:
- Traveling Salesman Problem (TSP) is a problem to determine a closed tour visiting each $s \in S$ such that the total tour length is minimal.
 - We are searching for the optimal sequence of visits $\Sigma = (\sigma_1, \dots, \sigma_n)$ such that

minimize
$$\Sigma$$

$$L = \left(\sum_{i=1}^{n-1} c(\mathbf{s}_{\sigma_i}, \mathbf{s}_{\sigma_{i+1}})\right) + c(\mathbf{s}_{\sigma_n}, \mathbf{s}_{\sigma_1})$$
subject to $\Sigma = (\sigma_1, \dots, \sigma_n), 1 \le \sigma_i \le n, \sigma_i \ne \sigma_i$ for $i \ne j$. (1

- The TSP can be considered on a graph G(V, E) where the set of vertices V represents sensor locations S and E are edges connecting the nodes with the cost $c(s_i, s_i)$
- For simplicity we can consider $c(s_i, s_i)$ to be Euclidean distance; otherwise, we also need to address the path/motion planning problem. Euclidean TSP
- If $c(s_i, s_i) \neq c(s_i, s_i)$ it is the Asymmetric TSP
- The TSP is known to be NP-hard unless P=NP.

Soft-computing techniques, evolutionary methods, and unsupervised learning.

Constructive heuristic – Nearest Neighborhood (NN) algorithm;

heuristic (1998). http://www.akira.ruc.dk/~keld/research/LKH/

Branch&Bound, Branch&Cut, and Integer Linear Programming (ILP).

Combinatorial meta-heuristics

Approximation algorithms

Heuristic algorithms

Variable Neighborhood Search (VNS);
 Greedy Randomized Adaptive Search Procedure (GRASP).

• Christofides's algorithm with $L \leq \frac{3/2}{L_{out}}$

1. Use a construction heuristic to create an initial route

NN algorithm, cheapest insertion, farther insertion

2.1 Determine swapping that can shorten the tour (i, j) for

Minimum Spanning Tree (MST) heuristic with L ≤ 2L_{opt}.

2-Opt – local search algorithm proposed by Croes 1958.

Problem Berlin52 from the TSPLIB

• For the triangle inequality, the length of such a tour L is

1. Shake procedure explores the neighborhood of the current so-

lution to escape from a local minima using operators:

2. Local search procedure improves the solution by

Algorithm 1: VNS-based Solver to the TSP

Input: S - Set of the target locations to be visited.

Output: Σ – Found sequence of visits to locat $\Sigma^* \leftarrow \text{Initial sequence found by cheapest inser-$ while terminal condition is not met do

 $\Sigma'' \leftarrow localSearch(\Sigma')$

if Σ'' is "better" than Σ' then

 $\Sigma' \leftarrow \Sigma''$ // Select Σ'' instead of Σ'

Path insert – moves a subsequence;

 $L \leq 2L_{optimal}$,

Overview of the Variable Neighborhood Search (VNS) for the TSP Variable Neighborhood Search (VNS) is a metaheuristic for solving combinatorial optimization and global optimiza-

tion problems by searching distant neighborhoods of the current incumbent solution using shake and local search.

where $L_{optimal}$ is the cost of the optimal solution of the TSP.

15 / 46

2-Opt Heuristic

Christofides's Algorithm to the TSP

- Christofides's algorithm
- 1. Compute the MST of the input graph G.
- 2. Compute the minimal matching on the odddegree vertices. 3. Shortcut a traversal of the resulting Eulerian
- graph

• For the triangle inequality, the length of such a tour L is

$$L \leq \frac{3}{2}L_{optimal}$$
,

where $L_{optimal}$ is the cost of the optimal solution of the TSP.

Length of the MST is $\leq L_{optimal}$ Sum of lengths of the edges in the matching $\leq \frac{1}{2}L_{optimal}$

route[0] to route[i-1]; route[i] to route[i] in reverse order; route[i] to route[end];

2. Repeat until no improvement is made

 $1 \le i \le n$ and $i+1 \le j \le n$

Determine length of the route;

 Update the current route if the length is shorter than the existing solution.

 $\Sigma' \leftarrow \text{shake}(\Sigma^*)$ for n^2 -times do

B4M36UIR - Lecture 05: Multi-goal Planning

neighborhoods.

and data collection missions.

data collection plans.

Multi-Goal Path Planning (MTP) Problem

- MTP problem is a robotic variant of the TSP with the edge costs as the length of the shortest path connecting the locations.
- Variants of the robotic TSP includes additional constraints arising from limitations of real robotic systems such as
 - obstacles, curvature-constraints, sensing range, location precision.
- For *n* locations, we need to compute up to n^2 shortest paths.
- lacktriangle Having a roadmap (graph) representing \mathcal{C}_{free} , the paths can be found in the graph (roadmap), from which the G(V, E) for the TSP can be constructed. Visibility graph as a roadmap for a point robot provides a straight forward solution, but such a shortest path may not be necessarily feasible for more
- We can determine the roadmap using randomized sampling-based motion planning techniques.

Multi-goal Path Planning with Goal Regions

It may be sufficient to visit a goal region instead of the particular point location.

Not only a sequence of goals visit has to be determined, but also an appropriate location at each region has to be found.

Approaches to the TSPN

■ Euclidean TSPN with, disk-shaped δ neighborhoods is called Closed Enough TSP (CETSP).

• Simplified variant with regions as disks with radius δ - remote sensing with the δ communication range.

1. Determine sequence of visits Σ independently on the locations P, e.g., as a solution of

2. For the sequence Σ determine the locations P to minimize the total tour length using

· Sampling possible locations and use a forward search for finding the best locations;

The problem with goal regions can be considered as a variant of the Traveling Salesman Problem with Neighborhoods (TSPN).

A direct solution of the TSPN – approximation algorithms and heuristics

the TSP using centroids of the (convex) regions R.

Continuous optimization such as hill-climbing.

Touring polygon problem (TPP):

Traveling Salesman Problem with Neighborhoods

Given a set of n regions (neighbourhoods), what is the shortest closed path that visits

■ The problem is NP-hard and APX-hard, it cannot be approximated to within factor

Approximate algorithms exist for particular problem variants such as disjoint unit disk

■ TSPN provides a suitable problem formulation for planning various inspection

It enables to exploit non-zero sensing range, and thus find shortest (more cost-efficient)

Close Enough Traveling Salesman Problem (CETSP)

■ Close Enough TSP (CETSP) is a variant of the TSPN with disk shaped δ -neighborhoods.

B4M36UIR - Lecture 05: Multi-goal Plannin

■ Decoupled approach

Sampling-based approaches

B4M36UIR - Lecture 05: Multi-goal Planning

E.g., using evolutionary techniques or un

Multi-goal Planning

Traveling Salesman Problem with Neighborhoods (TSPN)

- Instead visiting a particular location $s \in S$, $s \in \mathbb{R}^2$ as in the TSP, we request to visit a set of regions $R = \{r_1, \dots, r_n\}$, $r_i \subset \mathbb{R}^2$ to save travel cost.
- The TSP becomes the TSP with Neighborhoods (TSPN) where, in addition to the determination of the sequence Σ , we determine a suitable locations of visits $P = \{p_1, \dots, p_n\}$,
- \blacksquare The problem is a combination of combinatorial optimization to determine Σ with continuous optimization to determine P.

subject to $R = \{r_1, \ldots, r_n\}, r_i \subset \mathbb{R}^2$ $P = \{\boldsymbol{p}_1, \dots, \boldsymbol{p}_n\}, \boldsymbol{p}_i \in r_i$ $\Sigma = (\sigma_1, \ldots, \sigma_n), 1 \leq \sigma_i \leq n,$ $\sigma_i \neq \sigma_i$ for $i \neq j$ Foreach $r_i \in R$ there is $\mathbf{p}_i \in r_i$

■ The problem can be then formulated as the Generalized Traveling Salesman Problem (GTSP)

For each region, sample possible locations of visits into a discrete set of locations for each region

E.g., Local Iterative Optimization (LIO), Váňa & Faigl (IROS 2015)

Safra and Schwartz (2006) - Computational Complexity

Decoupled Sampling-based Solution of the TSPN / CETSP

- Decoupled Determine sequence of visits as a solution of the Euclidean TSP for the representatives of the regions R, e.g., using centroids.
- Sample each region (neighborhood) with k samples, e.g., k = 6.
- Construct graph and find the shortest tour in by graph search in $\mathcal{O}(nk^3)$ for n regions and nk^2

Iterative Refinement in the Multi-goal Planning Problem with Regions

- Let the sequence of *n* polygon regions be $R = (r_1, \dots, r_n)$.
- Li, F., Klette, R.: Approximate algorithms for touring a sequence of polygons. 200

 1. Sampling regions into a discrete set of points and determine all shortest path between each sampled points in the sequence of visits to the regions.

Initialization: Construct an initial touring polygons path using a sampled point

- of each region. Let the path be defined by $P = (p_1, p_2, \dots, p_n)$, where $p_i \in r_i$ and L(P) be the length of the shortest path induced by P. Refinement: For $i=1,2,\ldots,n$:

 Find $\boldsymbol{p}_i^* \in r_i$ minimizing the length of the path $d(\boldsymbol{p}_{i-1},\boldsymbol{p}_i^*) + d(\boldsymbol{p}_i^*,\boldsymbol{p}_{i+1})$,
- where $d(p_k, p_l)$ is the path length from p_k to p_l , $p_0 = p_n$, and $p_{n+1} = p_1$.

 If the total length of the current path over point p_l^* is shorter than over p_l .
- replace the point p_i by p_i^* . Compute the path length Lnew using the refined points.
- Termination condition: If $L_{new}-L<\epsilon$ Stop the refinement. Otherwise $L \leftarrow L_{new}$ and go to Step 3.
- 6. Final path construction: Use the last points and construct the path using the shortest paths among obstacles between two consecutive points.

 On-line sampling during the iterations – Local Iterative Optin

 Váňa & Faigl (IROS 2015).

Part II

Part 2 – Unsupervised Learning for Multi-goal Planning

2. $i \leftarrow 0$: $\sigma \leftarrow 12.41 n + 0.06$:

4.3 $I \leftarrow I \cup \{ \nu^* \}$

5. $\sigma \leftarrow (1 - \alpha)\sigma$; $i \leftarrow i + 1$;

Otherwise retrieve solution.

4. foreach $s \in \Pi(S)$ (a permutation of S)

4.1 $\nu^* \leftarrow \operatorname{argmin}_{\nu \in \mathcal{N} \setminus I} \| (\nu, s) \|$

4.2 foreach ν in d neighborhood of ν^*

 $\nu \leftarrow \nu + \mu f(\sigma, d)(s - \nu)$

If (termination condition is not satisfied) Goto Step 3;

 $e^{-\frac{d^2}{\sigma^2}}$ for d < 0.2m.

I ← ∅

Unsupervised Learning based Solution of the TSP

- Iterative learning procedure where neurons (nodes) adapt to the target locations.
- Based on self-organizing map by T. Kohonen.
- Somhom, S., Modares, A., Enkawa, T. (1999) Deployed in robotic problems such as inspection and
- search-and-rescue planning. Faigl Let al (2011) Generalized to polygonal domain with (overlapping) regions.
- Evolved to Growing Self-Organizing Array (GSOA). A general heuristic for various routing problems with neighborhoods; in-cluding routing problems with profit aka the orienteering problem.

Learning epoch 12

Learning epoch 42

Example of Unsupervised Learning for the TSP

Learning epoch 35

Learning epoch 53

Unsupervised Learning based Solution of the TSP

Kohonen's type of unsupervised two-layered neural network (Self-Organizing Map)

- Neurons' weights represent nodes $\mathcal{N} = \{\nu_1, \dots, \nu_m\}$ in a plane (input space \mathbb{R}^2).
- · Nodes are organized into a ring that evolved in the output space \mathbb{R}^2).
- lacksquare Target locations $oldsymbol{S} = \{oldsymbol{s}_1, \dots oldsymbol{s}_n\}$ are presented to the network in a random order
- Nodes compete to be winner according to their distance to the presented goal s
 - $\nu^* = \operatorname{argmin}_{\nu \in \mathcal{N}} |\mathcal{D}(\{\nu, s)|.$
- The winner and its neighbouring nodes are adapted (moved) towards the target according to the neighbouring function $u' \leftarrow \mu f(\sigma, d)(\nu - s)$

$$f(\sigma,d) = \left\{ egin{array}{ll} e^{-rac{d^2}{\sigma^2}} & ext{for } d < m/n_f, \ 0 & ext{otherwise,} \end{array}
ight.$$

Best matching unit ν to the presented prototype s is determined according to the distance function $|\mathcal{D}(\nu, s)|$.

variant of the Traveling Salesman Problem (TSP).

 $\begin{array}{l} \mathbf{selectWinner} \operatorname{argmin}_{\nu \in \mathcal{N}} |S(g,\nu)|; \\ \mathbf{adapt}(S(g,\nu), \mu f(\sigma, l) |S(g,\nu)|); \end{array}$ $error \leftarrow \max\{error, |S(g, \nu^*)|\};$

■ For multi-goal path planning – the selectWinner and adapt procedures are based on the solution of the

Algorithm 2: SOM-based MTP solver

 $\mathcal{N} \leftarrow \text{initialization}(\nu_1, \dots, \nu_m);$

 $\sigma \leftarrow (1 - \alpha)\sigma$; until error $< \delta$;

path planning problem.

Unsupervised Learning for Multi-goal Planning

repeat $error \leftarrow 0$: foreach $g \in \Pi(S)$ do

- For the Euclidean TSP, D is the Euclidean distance
- However, for problems with obstacles, the multi-goal path planning, \mathcal{D} should correspond to the length of the shortest, collision-free path.

- Maximal number of learning epochs i ≤ i_{max}, e.g., $i_{max} = 120$
- Winner neurons are negligibly close to sensor locations, e.g., less than 0.001.

Somhom, S., Modares, A., Enkawa, T. (1999): Competition-based neural network for the multiple travelling salesment problem with minmax objective. Computers & Operations Research. Faigl, J. et al. (2011): An application of the

Unsupervised Learning for Multi-goal Planning

SOM for the TSP in the Watchman Route Problem - Inspection Planning

During the unsupervised learning, we can compute coverage of W from the current ring (solution represented by the neurons) and adapt the network towards uncovered parts of W.

Unsupervised Learning based Solution of the TSP - Detail

■ Target (sensor) locations $S = \{s_1, ..., s_n\}$, $s_i \in \mathbb{R}^2$; Neurons $\mathcal{N} = (\nu_1, ..., \nu_m)$, $\nu_i \in \mathbb{R}^2$, m = 2.5n.

Learning gain σ ; epoch counter i; gain decreasing rate $\alpha = 0.1$; learning rate $\mu = 0.6$.

//clear inhibited neurons

// inhibit the winner

Convex cover set of W created on top of a triangular mesh.

together with the corresponding s_p , such that $\|(s_p, s)\| \le \delta(s)$.

The winner and its neighborhoods are adapted (moved) towards s₀.

Incident convex polygons with a straight line segment are found by walking in a triangular mesh

Transactions on Neural Networks 21(10):1668-1679 2010

Unsupervised Learning for Multi-goal Planning

Growing Self-Organizing Array (GSOA)

Growing Self-Organizing Array (GSOA) is generalization of the unsupervised learning to routing problems

• The GSOA is an array of nodes $\mathcal{N} = \{\nu_1, \dots, \nu_M\}$ that evolves in the problem space using unsupervised learning

• The array adapts to each $s \in S$ (in a random order) and for each s a new winner node ν^* is determined

• After the adaptation to all $s \in S$, each s has its ν and s_p , and the array defines the sequence Σ and the

motivated by data collection planning, i.e., routing with neighborhoods such as the Close Enough TSP

Unsupervised Learning for the TSPN

- A suitable location of the region can be sampled during the winner selection.
- We can use the centroid of the region for the shortest path computation from ν to the region r presented to the network.
- Then, an intersection point of the path with the region can be used as an alternate location Faigl, J. et al. (2013): Visiting convex regions in a polygonal map. Robotics and Autonomous
- ullet For the Euclidean TSPN with disk-shaped δ neighborhoods, we can compute the alternate location directly from the Euclidean distance.

Unsupervised Learning for Multi-goal Planning

SOM for the Traveling Salesman Problem with Neighborhoods (TSPN) Unsupervised learning of the SOM for the TSP allows to generalize the adaptation procedure to the TSPN.

lem, Neurocomputing, 74(5):671-679, 2011.

It also provides solutions for non-convex regions, overlapping regions, and coverage problems.

Faigl, J., Kulich, M., Vonásek, V., Přeučil, L.: An Application of Self-On

Unsupervised Learning for the Multi-Goal Path Planning

Unsupervised learning procedure for the Multi-goal Path Planning (MTP) problem a robotic

Faigl, J., Vonásek, V., Přeučil, L.: Visiting Convex Regions in a Polygonal Map, Robotics and Autonomous Systems, 61(10):1070–1083, 2013.

It adaptively adjusts the number of nodes

Unsupervised Learning for Multi-goal Planning GSOA - Winner Selection and Its Adaptation • Selecting winner node ν^* for s and its waypoint s_p • Winner adaptation ■ For each $s \in S$, we create new node v^* , and therefore, all not winning nodes are removed after processing all locations in S (one learning epoch) to balance the number of nodes in the GSOA. After each learning epoch, the GSOA encodes a feasible solution of the CETSP. • The power of adaptation is decreasing using a cooling schedule after each learning epoch. • The GSOA converges to a stable solution in tens of epochs. Number of epochs can be set. Faigl, J. (2018): GSOA: Growing Self-Organizing Array - Unsupervise and other routing problems. Neurocomputing 312: 120-134 (2018). B4M36UIR - Lecture 05: Multi-goal Planning TSPN in Multi-goal Planning with Localization Uncertainty Example - Results on the TSPN for Planning with Localization Uncertainty Deployment in indoor and outdoor environment with ground mobile robots and Legislation in the comment of the co

TSP: L=184 m, E_{avg}=0.57 m TSPN: L=202 m, E_{avg}=0.35 m

Unsupervised Learning for Multi-goal Planning GSOA Evolution in solving the 3D CETSP

y [m]

TSPN in Multi-goal Planning with Localization Uncertainty

auviliary navina

Example - TSPN for Planning with Localization Uncertainty

■ Teach-and-repeat autonomous navigation using vision-based bearing corrections that are more precise than estimation of the traveled distance based on odometry measurements.

Krajník, T., Faigl, J., Vonásek, V., Košnar, K., Kulich, M., and Přeučil, L.: Simple yet stable bearing-only navigation, Journal of Field Robotics, 27(5):511-533, 2010.

- The localization uncertainty can be decreased by visiting auxiliary navigation waypoints prior the target locations.
- It can be formulated as a variant of the TSPN with auxiliary navigation waypoints.

target locations.

Faigl, J., Krajník, T., Vonásek, V., and Přeučil, L.: On localization uncertainty in al International Conference on Robotics and Automation (ICRA), 2012, pp. 1119-1124.

B4M36UIR - Lecture 05: Multi-goal Planning

Topics Discussed

Topics Discussed

- Robotic information gathering in inspection missions
- Inspection planning and multi-goal path planning coverage planning
- Multi-goal path planning (MTP)
 - Robotic Traveling Salesman Problem (TSP)
 - Traveling Salesman Problem with Neighborhoods (TSPN) and Close Enough Traveling Salesman Problem (CETSP)
 - Decoupled and Sampling-based approaches
 - TSP can be solved by efficient heuristics such as LKH
 - Optimal, approximation, and heuristics solutions
 - Generalized TSP (GTSP)

■ Next: Data collection planning

Summary of the Lecture

x [m]

B4M36UIR - Lecture 05: Multi-goal Planning

41 / 46

