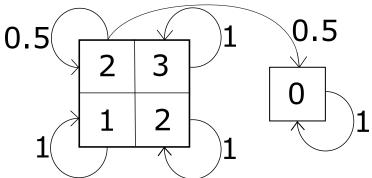
Game theory - lab 2

David Milec

Czech Technical University in Prague
milecdav@fel.cvut.cz

December 12, 2022

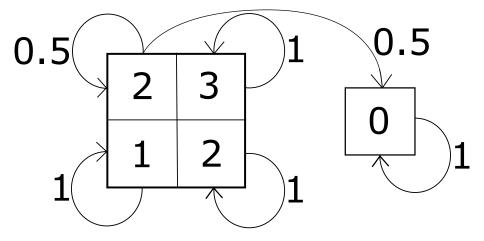

Overview

- Stochastic Game
- 2 Value Iteration in Stochastic Games
- 3 Computing Value Iteration
- Pursuit Evasion Game as Stochastic Game

David Milec (CTU)

Stochastic Game

- Strategy sets M and N
- The set S of states
- A transition function: $T: S \times M \times N \rightarrow \Delta_S$
- A rewards function: $R: S \times M \times N \rightarrow \mathbb{R}$


David Milec (CTU) GT - lab 2 December 12, 2022 3/12

- Value iteration in stochastic games in an adaptation of value iteration used to solve MDPs.
- It stores all the values for all possible states of the game.
- Value iteration iteratively updates those values based on possible actions in each state, solving matrix game created from next state values.
- Finally, the value iteration uses computed values to compute the strategy.

S is the state space, $v:S\to\mathbb{R}$ is value in each state, $\mathcal A$ is set of all combinations of actions and $A:S\to\mathcal A$ is a function returning all possible action tuples available in a given state. Q is a matrix game created for each state in each iteration, $r:S\times\mathcal A\to\mathbb{R}$ is immediate payoff and $T:S\times\mathcal A\to S$ is a transition function. γ is discounting constant.

$$orall s \in S$$
 initialize $v(s) = 0$ and until v converges $orall s \in S$ $orall (a_1, a_2) \in A(s)$ $Q(a_1, a_2) = r(s, a_1, a_2) + \gamma \sum_{s' \in S} T(s, a_1, a_2) v(s')$ $v(s) = \max_x \min_y xQy$

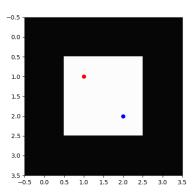
Try Value iteration on the example game with $\gamma=0.5, \gamma=0.9$ and $\gamma=1.$

Value iteration solution $\gamma=0.5$ (u_{ij} are values of the matrix game we need to solve)

iteration	$V(s_1)$	$V(S_2)$	<i>u</i> ₁₁	<i>u</i> ₂₁	u ₁₂	u ₂₂
1	2	0	2	1	3	2
2	2.5	0	2.5	2	4	3
3	2.625	0	2.625	2.25	4.25	3.25
4	2.656	0	2.656	2.313	4.313	3.313
5	2.664	0	2.664	2.328	4.328	3.328
6	2.664	0	2.664	2.328	4.328	3.328
7	2.666	0	2.666	2.333	4.333	3.333

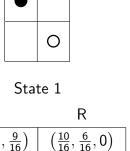
Value iteration solution $\gamma = 0.9$

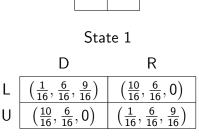
iteration	$V(s_1)$	$V(S_2)$	u_{11}	u ₂₁	<i>u</i> ₁₂	u ₂₂
1	2	0	2	1	3	2
2	2.9	0	2.9	2.8	4.8	3.8
3	3.61	0	3.305	3.61	5.61	4.61
4	4.249	0	3.625	4.249	6.249	5.249
5	4.824	0	3.912	4.824	6.824	5.824
6	5.342	0	4.171	5.342	7.342	6.342
7	5.808	0	4.404	5.808	7.808	6.808
		0				
137	10	0	6.5	10	12	11


Value iteration solution $\gamma=1$

iteration	$V(s_1)$	$V(S_2)$	u ₁₁	u ₂₁	<i>u</i> ₁₂	u ₂₂
1	2	0	2	1	3	2
2	3	0	3	3	5	4
3	4	0	3.5	4	6	5
4	5	0	4	5	7	6
5	6	0	4.5	6	8	7
6	7	0	5	7	9	8
7	8	0	5.5	8	10	9
		0				
100	102	0	52.5	102	104	103

Will go up to infinity.


Pursuit Evasion Game as Stochastic Game


 On the example game with one pursuer and one evader we will assume that move is successful with probability 75%, otherwise the agent does not move. Create a stochastic game representation of it. Hint: Put all positions equal under rotation and mirroring in one state.

Pursuit Evasion Game as Stochastic Game

We have states 1 and 2 which contains all possible configurations if we allow rotation and mirroring. Then we have state 3 which is absorbing state for the catch. Transition probabilities are in the tables below.

State 2

L	$\left(\frac{3}{16},\frac{10}{16},\frac{3}{16}\right)$	$\left(0, \frac{1}{16}, \frac{15}{16}\right)$
D	$\left(\frac{6}{16},\frac{10}{16},0\right)$	$\left(\frac{3}{16},\frac{10}{16},\frac{3}{16}\right)$

R

Value Iteration in Homework

- Your homework is to implement value iteration for the pursuer evader game shown at the beginning.
- In the homework we either catch, thus ending the game, and we get 1 or we move to single new state, resulting in:

$$orall s \in S$$
 initialize $v(s) = 0$ and until v converges $orall s \in S$
$$orall (a_1, a_2) \in A(s)$$

$$Q(a_1, a_2) = \text{if catch } 1 \text{ else } (\gamma v(s'))$$

$$v(s) = \max_x \min_v xQy$$

 max_x min_y xQy requires you to formulate and solve a linear program to find a Nash equilibrium.

◆ロト ◆個ト ◆差ト ◆差ト を めなべ