PKR Test-03 EN

1. Find all rotation matrices that transform vectors

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right] \text { to vectors }\left[\begin{array}{rr}
0 & 1 \\
-1 & 0 \\
1 & 0
\end{array}\right]
$$

2. Let us assume a motion understood as a mapping of a general point X into a point Y given by

$$
\vec{y}_{\beta}=\mathrm{R} \vec{x}_{\beta}+\vec{o}_{\beta}^{\prime},
$$

where \vec{x}_{β}, resp. \vec{y}_{β}, are coordinates of the vector, that represents point X, resp. point Y, in the coordinate system with orthonormal basis β. Matrix R and vector \vec{o}^{\prime} are given as follows

$$
\mathrm{R}=\frac{1}{3}\left[\begin{array}{rrr}
2 & -2 & 1 \\
1 & 2 & 2 \\
-2 & -1 & 2
\end{array}\right], \quad \vec{o}_{\beta}^{\prime}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

(a) Write down the matricidal equation that determines the points on the axis of motion.
(b) Find all points of the axis of motion.
3. Consider two rotations. The first rotation $\vec{y}=R_{1}(\vec{x})$ is given by matrix

$$
\mathrm{R}_{1}=\frac{1}{3}\left[\begin{array}{rrr}
2 & 2 & -1 \\
-1 & 2 & 2 \\
2 & -1 & 2
\end{array}\right]
$$

The second rotation $\vec{y}=\mathrm{R}_{2}(\vec{x})$ is given by angle-axis parameterization

$$
\theta_{2}=\frac{\pi}{3}, \quad \vec{v}_{2}=\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Find a unit quaternion representing the composite rotation

$$
\mathrm{R}_{2}\left(\mathrm{R}_{1}(\vec{x})\right)
$$

4. Costruct a lexicographic Groebner basis w.r.t. the variable ordering $x>y$ of the following polynomial system and find all its complex solutions

$$
\begin{aligned}
& x y+x+1=0 \\
& x y+y+1=0
\end{aligned}
$$

5. Let us have a manipulator with four axes of motion as shown in the figure.

(a) Draw the coordinates system of the links as defined by the Denavit-Hartenberg convention into the figure;
(b) Compute the Denavit-Hartenberg parameters of the manipulator.
6. Let us have a manipulator whose forward kinematics is defined by the equations

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
f_{1}\left(\theta_{1}, d_{2}\right) \\
f_{2}\left(\theta_{1}, d_{2}\right)
\end{array}\right]=\left[\begin{array}{c}
l \cos \theta_{1} \\
d_{2}-l \sin \theta_{1}
\end{array}\right], \quad l>0
$$

Determine the sets of singular configurations and singular poses for this manipulator.

