Solving (radical) polynomial systems by eigenvectors of a multiplication matrix

December 7, 2022

```
Algorithm 1: Multivariate Polynomial Division Algorithm
    Input: \(f, F=\left(f_{1}, \ldots, f_{s}\right), \geq\) (monomial ordering)
    Output: \(\left(q_{1}, \ldots, q_{s}\right), r\) such that \(f=\sum_{i=1}^{s} q_{i} f_{i}+r, \mathrm{LT}_{\geq}(r)\) is not divisible by any of \(\mathrm{LT}_{\geq}\left(f_{i}\right)\) or \(r=0\)
    \(q_{1} \leftarrow \cdots \leftarrow q_{s} \leftarrow r \leftarrow 0\)
    \(p \leftarrow f\)
    while \(p \neq 0\) do
        \(i \leftarrow 1\)
        divisionoccured \(\leftarrow F A L S E\)
        while \(i \leq s\) and divisionoccured \(=F A L S E\) do
            if \(\mathrm{LT}_{\geq}\left(f_{i}\right)\) divides \(\mathrm{LT}_{\geq}(p)\) then
                \(q_{i} \leftarrow q_{i}+\frac{\mathrm{LT}>(p)}{\mathrm{LT}>\left(f_{i}\right)}\)
                \(p \leftarrow p-\frac{\mathrm{LT}_{>}(p)}{\mathrm{LT}\left(f_{i}\right)} f_{i}\)
                divisionoccured \(\leftarrow T R U E\)
            else
                \(i \leftarrow i+1\)
        if divisionoccured \(=F A L S E\) then
            \(r \leftarrow r+\mathrm{LT}_{\geq}(p)\)
            \(p \leftarrow p-\mathrm{LT}_{\geq}(p)\)
    return \(\left(q_{1}, \ldots, q_{s}\right), r\)
```

Definition 1. Let \mathbf{x}^{α} and \mathbf{x}^{β} be two monomials. We say that \mathbf{x}^{α} is greater or equal than \mathbf{x}^{β} w.r.t. the graded reverse lexicographic order, or, simply,

$$
\mathrm{x}^{\alpha} \geq_{\text {grevlex }} \mathrm{x}^{\boldsymbol{\beta}}
$$

if

$$
|\boldsymbol{\alpha}|=\sum_{i=1}^{n} \alpha_{i}>|\boldsymbol{\beta}|=\sum_{i=1}^{n} \beta_{i}, \text { or }|\boldsymbol{\alpha}|=|\boldsymbol{\beta}| \text { and the rightmost nonzero entry of } \boldsymbol{\alpha}-\boldsymbol{\beta} \text { is negative. }
$$

Example 1. For the variable ordering $x>y>z$, the two monomials

$$
\mathbf{x}^{\alpha}=x y^{3} z \geq_{\text {grevlex }} x^{2} y z=\mathbf{x}^{\beta}
$$

since $|\boldsymbol{\alpha}|=1+3+1=5>|\boldsymbol{\beta}|=2+1+1=4$. Also,

$$
\mathbf{x}^{\alpha}=x^{2} y z \geq_{\text {grevlex }} x y^{2} z=\mathbf{x}^{\beta}
$$

since $|\boldsymbol{\alpha}|=2+1+1=4=|\boldsymbol{\beta}|=1+2+1=4$ and the rightmost nonzero entry of $\boldsymbol{\alpha}-\boldsymbol{\beta}=(2,1,1)-(1,2,1)=$ $(1,-1,0)$ is negative.

Task 1. Let us have a Gröbner basis $G=\left(g_{1}, g_{2}, g_{3}\right)$ with

$$
\begin{aligned}
g_{1} & =x_{1} x_{2}-\frac{4}{3} x_{1}-\frac{4}{3} x_{2}+\frac{4}{3} \\
g_{2} & =x_{2}^{2}-\frac{2}{3} x_{1}-\frac{5}{3} x_{2}+\frac{2}{3} \\
g_{3} & =x_{1}^{2}-\frac{5}{3} x_{1}-\frac{2}{3} x_{2}+\frac{2}{3}
\end{aligned}
$$

w.r.t. grevlex monomial ordering for the variable ordering $x_{1}>x_{2}$. Construct a multiplication matrix M_{f} for $f=1+x_{1}-x_{2}$ and extract the solutions to G from the eigenvectors of M_{f}^{\top}.

Solution: According to [1, Section 3.5.6], we have a well-defined linear map

$$
\begin{aligned}
\mathcal{M}_{f}: \mathbb{Q}\left\{1, x_{1}, x_{2}\right\} & \rightarrow \mathbb{Q}\left\{1, x_{1}, x_{2}\right\} \\
h & \mapsto f h \bmod G
\end{aligned}
$$

where $\mathbb{Q}\left\{1, x_{1}, x_{2}\right\}$ denotes the set of all linear combinations of $1, x_{1}, x_{2}$ with coefficients from \mathbb{Q}. We can thus see that $\mathbb{Q}\left\{1, x_{1}, x_{2}\right\}$ is a linear space of dimension 3 . We can also see that \mathcal{M}_{f} is a well-defined linear map since dividing any polynomial from $\mathbb{Q}\left[x_{1}, x_{2}\right]$ by G yields a polynomial with no monomial divisible by any of $\mathrm{LM}_{\geq}\left(g_{1}\right)=x_{1} x_{2}, \mathrm{LM}_{\geq}\left(g_{2}\right)=x_{2}^{2}, \mathrm{LM}_{\geq}\left(g_{3}\right)=x_{1}^{2}$. Hence, \mathcal{M}_{f} has a matrix with respect to a basis $B=\left\{1, x_{1}, x_{2}\right\}$

$$
M_{f}=\mathcal{M}_{f}(B)_{B}=\left[\begin{array}{lll}
\mathcal{M}_{f}(1)_{B} & \mathcal{M}_{f}\left(x_{1}\right)_{B} & \mathcal{M}_{f}\left(x_{2}\right)_{B}
\end{array}\right]
$$

Also, we have

$$
f\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right] \bmod G=\left[\begin{array}{c}
\mathcal{M}_{f}(1) \\
\mathcal{M}_{f}\left(x_{1}\right) \\
\mathcal{M}_{f}\left(x_{2}\right)
\end{array}\right]=\left[\begin{array}{c}
\mathcal{M}_{f}(1)_{B}^{\top} \\
\mathcal{M}_{f}\left(x_{1}\right)_{B}^{\top} \\
\mathcal{M}_{f}\left(x_{2}\right)_{B}^{\top}
\end{array}\right]\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right]=M_{f}^{\top}\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right] \Longleftrightarrow f\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right]+Q\left[\begin{array}{l}
g_{1} \\
g_{2} \\
g_{3}
\end{array}\right]=M_{f}^{\top}\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right]
$$

where Q is a 3×3 matrix of quotient polynomials. Then for a solution $\left(p_{1}, p_{2}\right)$ to G we have

$$
f\left(p_{1}, p_{2}\right)\left[\begin{array}{c}
1 \\
p_{1} \\
p_{2}
\end{array}\right]=f\left(p_{1}, p_{2}\right)\left[\begin{array}{c}
1 \\
p_{1} \\
p_{2}
\end{array}\right]+Q\left(p_{1}, p_{2}\right) \underbrace{\left[\begin{array}{l}
g_{1}\left(p_{1}, p_{2}\right) \\
g_{2}\left(p_{1}, p_{2}\right) \\
g_{3}\left(p_{1}, p_{2}\right)
\end{array}\right]}_{\mathbf{0}}=M_{f}^{\top}\left[\begin{array}{c}
1 \\
p_{1} \\
p_{2}
\end{array}\right]
$$

Thus, the solutions to G may be recovered from the eigenvectors of M_{f}^{\top}. Also, since, for $f=a_{0}+a_{1} x_{1}+a_{2} x_{2}$ we have

$$
\begin{aligned}
M_{f}^{\top}\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right] & =f\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right] \bmod G=\left(a_{0}+a_{1} x_{1}+a_{2} x_{2}\right)\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right] \bmod G=a_{0}\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right]+a_{1} x_{1}\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right]+a_{2} x_{2}\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right] \bmod G= \\
& =\underbrace{a_{0}\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right] \bmod G}_{a_{0} \mathbf{I}\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right]}+\underbrace{a_{1} x_{1}\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right] \bmod G}_{a_{1} M_{x_{1}}^{\top}\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right]}+\underbrace{\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right] \bmod G}_{a_{2} M_{x_{2}}^{\top}\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right]}=\left(a_{0} \mathbf{I}+a_{1} M_{x_{1}}^{\top}+a_{2} M_{x_{2}}^{\top}\right)
\end{aligned}
$$

In other words,

$$
M_{f}=a_{0} \mathbf{I}+a_{1} M_{x_{1}}+a_{2} M_{x_{2}}
$$

So, it is sufficient to compute $M_{x_{1}}$ and $M_{x_{2}}$:

$$
M_{x_{1}}^{\top}\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right]=x_{1}\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right] \bmod G=\left[\begin{array}{r}
x_{1} \\
x_{1}^{2} \\
x_{1} x_{2}
\end{array}\right] \bmod G=\left[\begin{array}{rrr}
0 & 1 & 0 \\
-\frac{2}{3} & \frac{5}{3} & \frac{2}{3} \\
-\frac{4}{3} & \frac{4}{3} & \frac{4}{3}
\end{array}\right]\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right] \Rightarrow M_{x_{1}}^{\top}=\left[\begin{array}{rrr}
0 & 1 & 0 \\
-\frac{2}{3} & \frac{5}{3} & \frac{2}{3} \\
-\frac{4}{3} & \frac{4}{3} & \frac{4}{3}
\end{array}\right]
$$

$$
M_{x_{2}}^{\top}\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right]=x_{2}\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right] \bmod G=\left[\begin{array}{r}
x_{2} \\
x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right] \bmod G=\left[\begin{array}{rrr}
0 & 0 & 1 \\
-\frac{4}{3} & \frac{4}{3} & \frac{4}{3} \\
-\frac{2}{3} & \frac{5}{3} & \frac{2}{3}
\end{array}\right]\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right] \Rightarrow M_{x_{2}}^{\top}=\left[\begin{array}{rrr}
0 & 0 & 1 \\
-\frac{4}{3} & \frac{4}{3} & \frac{4}{3} \\
-\frac{2}{3} & \frac{2}{3} & \frac{5}{3}
\end{array}\right]
$$

Thus,

$$
M_{f}^{\top}=1 \cdot \mathbf{I}+1 \cdot M_{x_{1}}^{\top}+(-1) \cdot M_{x_{2}}^{\top}=\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right]+\left[\begin{array}{rrr}
0 & 1 & 0 \\
-\frac{2}{3} & \frac{5}{3} & \frac{2}{3} \\
-\frac{4}{3} & \frac{4}{3} & \frac{4}{3}
\end{array}\right]-\left[\begin{array}{rrr}
0 & 0 & 1 \\
-\frac{4}{3} & \frac{4}{3} & \frac{4}{3} \\
-\frac{2}{3} & \frac{2}{3} & \frac{5}{3}
\end{array}\right]=\left[\begin{array}{rrr}
1 & 1 & -1 \\
\frac{2}{3} & \frac{4}{3} & -\frac{2}{3} \\
-\frac{2}{3} & \frac{2}{3} & \frac{2}{3}
\end{array}\right]
$$

The characteristic polynomial of M_{f}^{\top} is

$$
p(\lambda)=\operatorname{det}\left(\lambda \mathbf{I}-M_{f}^{\top}\right)=\operatorname{det}\left[\begin{array}{rrr}
\lambda-1 & -\frac{2}{3} & \frac{2}{3} \\
-1 & \lambda-\frac{4}{3} & \frac{1}{3} \\
-1 & \frac{2}{3} & \lambda-\frac{5}{3}
\end{array}\right]=\lambda^{3}-3 \lambda^{2}+2 \lambda=\lambda(\lambda-1)(\lambda-2)
$$

The eigenvectors of M_{f}^{\top} are:

1. $\lambda_{1}=0$:

$$
\left(0 \cdot \mathbf{I}-M_{f}^{\top}\right) \mathbf{v}_{1}=\mathbf{0}
$$

$$
\left[\begin{array}{rrr}
-1 & -1 & 1 \\
-\frac{2}{3} & -\frac{4}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{2}{3} & -\frac{2}{3}
\end{array}\right] \mathbf{v}_{1}=\mathbf{0} \Rightarrow \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

2. $\lambda_{2}=1$:

$$
\begin{gathered}
\left(1 \cdot \mathbf{I}-M_{f}^{\top}\right) \mathbf{v}_{2}=\mathbf{0} \\
{\left[\begin{array}{rrr}
0 & -1 & 1 \\
-\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{2}{3} & \frac{1}{3}
\end{array}\right] \mathbf{v}_{2}=\mathbf{0} \Rightarrow \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]}
\end{gathered}
$$

3. $\lambda_{3}=2$:

$$
\begin{gathered}
\left(2 \cdot \mathbf{I}-M_{f}^{\top}\right) \mathbf{v}_{3}=\mathbf{0} \\
{\left[\begin{array}{rrr}
1 & -1 & 1 \\
-\frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{2}{3} & \frac{4}{3}
\end{array}\right] \mathbf{v}_{3}=\mathbf{0} \Rightarrow \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]}
\end{gathered}
$$

The solutions can be extracted from $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ by looking at the last 2 coordinates:

$$
S=\{(0,1),(2,2),(1,0)\}
$$

References

[1] Tomas Pajdla, Elements of geometry for robotics, https://cw.fel.cvut.cz/b221/_media/courses/pkr/ pro-lecture-2021.pdf.

