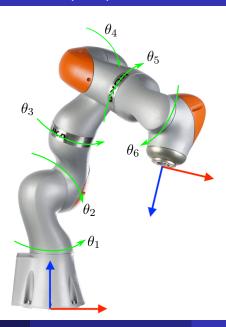
Inverse Kinematic Task (IKT)



Mathematical formulation of IKT

$$\mathbf{M}_e = \mathbf{M}_1^0 \mathbf{M}_2^1 \mathbf{M}_3^2 \mathbf{M}_4^3 \mathbf{M}_5^4 \mathbf{M}_6^5$$

$$\underbrace{\begin{bmatrix} \mathbf{R}_e & \mathbf{t}_e \\ \mathbf{0}^\top & 1 \end{bmatrix}}_{\text{pose of the end effector}} = \prod_{i=1}^6 \mathbf{M}_i^{i-1} (\boldsymbol{\theta_i} + \underbrace{\boldsymbol{\theta_{i_{\text{offset}}}}, d_i, a_i, \alpha_i}_{\text{DH parameters}})$$

$$\underbrace{\prod_{i=1}^6 \mathbf{M}_i^{i-1} (\boldsymbol{\theta_i} + \boldsymbol{\theta_{i_{\text{offset}}}}, d_i, a_i, \alpha_i) - \begin{bmatrix} \mathbf{R}_e & \mathbf{t}_e \\ \mathbf{0}^\top & 1 \end{bmatrix}}_{12 \text{ nonzero functions } \mathbf{f}(\boldsymbol{\theta})} = \mathbf{O}$$

We can solve 12 equations $\mathbf{f}(\theta_1, \dots, \theta_6) = \mathbf{f}(\boldsymbol{\theta}) = \mathbf{0}$ either numerically or symbolically.

Newthon's method (numerical method)

Denote by $\boldsymbol{\theta}^*$ one of the solutions to $\mathbf{f}(\boldsymbol{\theta}) = \mathbf{0}$ and by \mathbf{J} the Jacobian matrix $\frac{\partial \mathbf{f}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \in C(\boldsymbol{\theta}, \mathbb{R})^{12 \times 6}$.

Two basic operations of the Newthon's method are:

$$\theta_0 =$$
something close to θ^* (initialization)

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \mathbf{J}^+(\boldsymbol{\theta}_k)\mathbf{f}(\boldsymbol{\theta}_k)$$
 (improve the previous guess)

Symbolic method

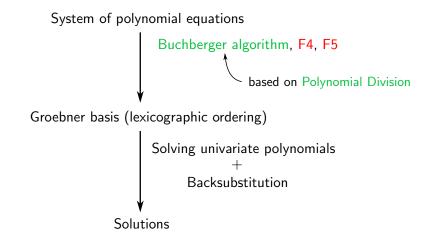
ullet Equations ${f f}(oldsymbol{ heta})$ are polynomial in $\cos heta_i$ and $\sin heta_i$

• New variables: $c_i = \cos \theta_i$, $s_i = \sin \theta_i$

• New polynomial equations:

18 equations
$$\begin{cases} \mathbf{f}(c_1, s_1, \dots, c_6, s_6) = \mathbf{0} \\ c_i^2 + s_i^2 = 1 \quad \forall i = 1, \dots, 6 \end{cases}$$

Groebner bases (symbolic method)



Monomials and terms

- **1** Monomial is a product of variables, e.g., x^3y^5 or the constant 1
- **9 Term** is a product of a nonzero constant with a monomial, e.g., $3x^2yzw^4$
- ullet Consider 3 variables x,y,z and order them, e.g.,

Every monomial can be written now as $\mathbf{x}^{\pmb{\alpha}}$ with $\mathbf{x}=(x,y,z)$ and $\pmb{\alpha}\in\mathbb{Z}^3_{\geq 0}$, e.g.,

$$y^2x^3z = \mathbf{x}^{\boldsymbol{\alpha}}$$
 with $\boldsymbol{\alpha} = (3, 2, 1)$

1 We say that term $a \mathbf{x}^{\alpha}$ divides term $b \mathbf{x}^{\beta}$ if

$$\beta_i - \alpha_i \ge 0 \quad \forall i = 1, \dots, n$$

Lexicographic monomial ordering

We define the relation

$$\mathbf{x}^{\boldsymbol{\alpha}} \geq_{\text{lex}} \mathbf{x}^{\boldsymbol{\beta}}$$

if the left-most nonzero element of $\alpha-\beta$ is positive or $\alpha=\beta$.

For example,

$$\mathbf{x}^{\boldsymbol{\alpha}} = x^3 y^3 z \ge_{\text{lex}} x^3 y^2 z^{10} = \mathbf{x}^{\boldsymbol{\beta}}$$

since

$$\alpha - \beta = (3, 3, 1) - (3, 2, 10) = (0, 1, -9)$$

We can extend this relation to terms by saying that

$$a \mathbf{x}^{\alpha} \geq_{\text{lex}} b \mathbf{x}^{\beta} \iff \mathbf{x}^{\alpha} \geq_{\text{lex}} \mathbf{x}^{\beta}$$

Multivariate Polynomial Division Algorithm

Algorithm 1: Multivariate Polynomial Division Algorithm

```
Input: f, F = (f_1, \ldots, f_s), \geq \text{(monomial ordering)}
    Output: (q_1, \ldots, q_s), r such that f = \sum_{i=1}^s q_i f_i + r, LT_{>}(r) is not
                   divisible by any of LT_{>}(f_i) or r=0
 1 \ q_1 \leftarrow \ldots \leftarrow q_s \leftarrow r \leftarrow 0
 p \leftarrow f
 3 while p \neq 0 do
         i \leftarrow 1
         divisionoccured \leftarrow FALSE
 5
         while i \le s and divisionoccured = FALSE do
               if LT_{>}(f_i) divides LT_{>}(p) then
 7
                  q_i \leftarrow q_i + \frac{\text{LT}_{\geq}(p)}{\text{LT}_{\sim}(f_i)}
                  p \leftarrow p - \frac{\text{LT}_{\geq}(p)}{\text{LT}_{\leq}(f_i)} f_i
 9
                    \text{divisionoccured} \leftarrow TRUE
10
               else
11
                i \leftarrow i + 1
12
         if divisionoccured = FALSE then
13
              r \leftarrow r + LT_{>}(p)
14
             p \leftarrow p - \operatorname{LT}_{\geq}(p)
15
16 return (q_1, \ldots, q_s), r
```