PKR Lab-07 Solution

Task 1. Consider motion given by a mapping of a general point X to point Y by

$$
\begin{equation*}
\vec{y}_{\beta}=\mathbf{R} \vec{x}_{\beta}+\vec{o}_{\beta}^{\prime}, \tag{1}
\end{equation*}
$$

where \vec{x}_{β}, resp. \vec{y}_{β}, are coordinate vectors representing point X, resp. point Y, in a coordinate system with an orthonormal basis β. Matrix \mathbf{R} and vector $\vec{o}^{\prime}=\overrightarrow{O O^{\prime}}$ are given as follows

$$
\mathbf{R}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \quad \vec{o}_{\beta}^{\prime}=\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]
$$

1. Write down the matricidal equation determining the coordinates of points on the axis of motion.
2. Find all the points on the axis of motion.

Solution: The axis of motion is the line in \mathbb{R}^{3} that is left invariant after applying Equation (1). The matrix equation that determines the points on the axis of motion is [1, Equation (9.2)]:

$$
(\mathbf{R}-\mathbf{I})^{2} \vec{x}_{\beta}=-(\mathbf{R}-\mathbf{I}) \vec{o}_{\beta}^{\prime}
$$

Substituting \mathbf{R} and \vec{o}_{β}^{\prime} to it we obtain

$$
\begin{gather*}
{\left[\begin{array}{rrr}
-1 & 1 & 0 \\
0 & -1 & 1 \\
1 & 0 & -1
\end{array}\right]^{2} \vec{x}_{\beta}=-\left[\begin{array}{rrr}
-1 & 1 & 0 \\
0 & -1 & 1 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]} \\
{\left[\begin{array}{rrr}
1 & -2 & 1 \\
1 & 1 & -2 \\
-2 & 1 & 1
\end{array}\right] \vec{x}_{\beta}=\left[\begin{array}{r}
1 \\
1 \\
-2
\end{array}\right]} \tag{2}
\end{gather*}
$$

We can solve this system of linear equations by Gaussian elimination:

$$
\left[\begin{array}{rrr|r}
1 & -2 & 1 & 1 \\
1 & 1 & -2 & 1 \\
-2 & 1 & 1 & -2
\end{array}\right] \sim\left[\begin{array}{rrr|r}
1 & -2 & 1 & 1 \\
0 & 3 & -3 & 0 \\
0 & -3 & 3 & 0
\end{array}\right] \sim\left[\begin{array}{rrr|r}
1 & -2 & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Denote $\vec{x}_{\beta}=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{\top}$. From the second row $x_{2}-x_{3}=0$ we conclude that $x_{2}=x_{3}$ and we let x_{3} to be any real number t. From the first row $x_{1}-2 x_{2}+x_{3}=1$ we conclude that $x_{1}=2 x_{2}-x_{3}+1=t+1$. Thus, the solutions to (2) are

$$
L=\left\{\left.\left[\begin{array}{r}
t+1 \\
t \\
t
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}=\left\{\left.\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}
$$

We may verify that the line L is left invariant under the motion given by 11 . For this we pick a general point from L and substitute it into (1):

$$
\mathbf{R}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)+\vec{o}_{\beta}^{\prime}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)+\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

We see that L is left invariant (in this case even point-wise, since \vec{o}_{β}^{\prime} is perpendicular to the rotation axis of R).

Task 2. Consider unit quaternion

$$
\mathbf{q}=\frac{1}{3}\left[\begin{array}{llll}
0 & -1 & -2 & -2
\end{array}\right]
$$

(a) For the rotation given by \mathbf{q}, find all pairs of (θ, \mathbf{v}) corresponding to its rotation angle $-\pi<\theta \leq \pi$ and its rotation axis generated by unit vector \mathbf{v},
(b) Find the rotation matrix corresponding to \mathbf{q}.

Solution:

(a) The quaternion is defined by

$$
\mathbf{q}=\left[\begin{array}{c}
\cos \frac{\theta}{2} \\
\sin \frac{\theta}{2} \mathbf{v}
\end{array}\right]
$$

where (θ, \mathbf{v}) define the angle and the normalized axis of rotation. That's why

$$
\cos \frac{\theta}{2}=0 \Rightarrow \sin \frac{\theta}{2}= \pm 1
$$

We, e.g., take the pair $\left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2}\right)=(0,1)$ which gives

$$
\frac{\theta}{2}=\frac{\pi}{2}+2 \pi k, k \in \mathbb{Z} \Longleftrightarrow \theta=\pi+4 \pi k, k \in \mathbb{Z}
$$

By the task we want $-\pi<\theta \leq \pi$, so $\theta=\pi$. We compute the normalized axis of rotation \mathbf{v} by dividing the last 3 coordinates of \mathbf{q} by $\sin \frac{\theta}{2}$:

$$
\mathbf{v}=\frac{1}{3}\left[\begin{array}{lll}
-1 & -2 & -2
\end{array}\right]^{\top} .
$$

If (θ, \mathbf{v}) defines \mathbf{q} for $-\pi<\theta \leq \pi$, then all pairs (θ, \mathbf{v}) with $-\pi<\theta \leq \pi$ that define the rotation given by \mathbf{q} are determined by $\{(\theta, \mathbf{v}),(-\theta,-\mathbf{v})\}$. Since for $\theta=\pi$ the value $-\theta=-\pi$ jumps out of the interval $(-\pi, \pi]$, then we simply add 2π to it, since it doesn't change the rotation matrix (according to the Rodriguez formula [1, Equation 7.22]). Hence, the answer is

$$
\left\{\left(\pi,-\left[\begin{array}{ccc}
\frac{1}{3} & \frac{2}{3} & \frac{2}{3}
\end{array}\right]^{\top}\right),\left(\pi,\left[\begin{array}{ccc}
\frac{1}{3} & \frac{2}{3} & \frac{2}{3}
\end{array}\right]^{\top}\right)\right\} .
$$

(b) The rotation matrix is given by the Rodriguez formula [1, Equation 7.22]:

$$
\begin{gathered}
\mathbf{R}=\cos \theta \mathbf{I}+(1-\cos \theta) \mathbf{v} \mathbf{v}^{\top}+\sin \theta[\mathbf{v}]_{\times} \\
\mathbf{R}=-\mathbf{I}+2 \cdot \frac{1}{9} \cdot\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 2
\end{array}\right]=\left[\begin{array}{lll}
-1 & & \\
& -1 & \\
& & -1
\end{array}\right]+\frac{2}{9}\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 4 & 4 \\
2 & 4 & 4
\end{array}\right]=\frac{1}{9}\left[\begin{array}{rrr}
-7 & 4 & 4 \\
4 & -1 & 8 \\
4 & 8 & -1
\end{array}\right]
\end{gathered}
$$

Another way to obtain \mathbf{R} is to use the formula in terms of quaternions [1, Equation 7.67]:

$$
\mathbf{R}=\left[\begin{array}{ccc}
q_{1}^{2}+q_{2}^{2}-q_{3}^{2}-q_{4}^{2} & 2\left(q_{2} q_{3}-q_{1} q_{4}\right) & 2\left(q_{2} q_{4}+q_{1} q_{3}\right) \\
2\left(q_{2} q_{3}+q_{1} q_{4}\right) & q_{1}^{2}-q_{2}^{2}+q_{3}^{2}-q_{4}^{2} & 2\left(q_{3} q_{4}-q_{1} q_{1}\right) \\
2\left(q_{2} q_{4}-q_{1} q_{3}\right) & 2\left(q_{3} q_{4}+q_{1} q_{2}\right) & q_{1}^{2}-q_{2}^{2}-q_{3}^{2}+q_{4}^{2}
\end{array}\right]=\frac{1}{9}\left[\begin{array}{rrr}
-7 & 4 & 4 \\
4 & -1 & 8 \\
4 & 8 & -1
\end{array}\right]
$$

Task 3. Consider rotation matrix

$$
\mathbf{R}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

(a) Find its (unit) rotation axis and angle $-\pi<\theta \leq \pi$.
(b) Find all unit quaternions corresponding to \mathbf{R}.

Solution:

(a) The rotation axis is given by the eigenvector corresponding to the eigenvalue $\lambda=1$:

$$
\mathbf{R} \mathbf{v}=\mathbf{v} \Longleftrightarrow(\mathbf{R}-\mathbf{I}) \mathbf{v}=\mathbf{0}
$$

We solve the linear homogeneous system of equations:

$$
\left[\begin{array}{rrr}
-1 & 1 & 0 \\
0 & -1 & 1 \\
1 & 0 & -1
\end{array}\right] \sim\left[\begin{array}{rrr}
-1 & 1 & 0 \\
0 & -1 & 1 \\
0 & 1 & -1
\end{array}\right] \sim\left[\begin{array}{rrr}
-1 & 1 & 0 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

We obtain 1 zero row in the row echelon form of $\mathbf{R}-\mathbf{I}$ indicating that $\operatorname{dim} \operatorname{ker}(\mathbf{R}-\mathbf{I})=1$. Let's denote $\mathbf{v}=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]$. Then we let v_{3} to be any real number t. From the second equation $-v_{2}+v_{3}=0$ we obtain $v_{2}=v_{3}=t$. From the first $-v_{1}+v_{2}=0$ we obtain $v_{1}=v_{2}=t$. Thus, all the solutions to this linear system may be described by

$$
\left\{\left.\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}
$$

Out of this set we take one of unit norm, e.g.,

$$
\mathbf{v}=-\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

The rotation angle can be determined from the Rodriguez formula:

$$
\begin{gathered}
\mathbf{R}=\cos \theta \mathbf{I}+(1-\cos \theta) \mathbf{v} \mathbf{v}^{\top}+\sin \theta[\mathbf{v}]_{\times} \\
{\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]=\cos \theta\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right]+\frac{1}{3}(1-\cos \theta)\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]+\frac{1}{\sqrt{3}} \sin \theta\left[\begin{array}{rrr}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right]}
\end{gathered}
$$

Out of these 9 equations we pick 2 given by the elements $(1,1)$ and $(1,2)$:

$$
\begin{aligned}
&(1,1): \quad 0=\cos \theta+\frac{1}{3}(1-\cos \theta) \Longleftrightarrow \cos \theta=-\frac{1}{2} \\
&(1,2): 1=\frac{1}{3}(1-\cos \theta)+\frac{1}{\sqrt{3}} \sin \theta \Longleftrightarrow \sin \theta=\frac{\sqrt{3}}{2}
\end{aligned}
$$

from which we deduce that $\theta=\frac{2 \pi}{3}$. Another way to compute the rotation axis and angle is to apply the formula [1, Equations 7.40, 7.41] for non-symmetric rotations:

$$
\theta=\arccos \left(\frac{1}{2} \operatorname{trace} \mathbf{R}-1\right)=\frac{2 \pi}{3}, \quad \mathbf{v}=\frac{1}{2 \sin \theta}\left[\begin{array}{l}
r_{32}-r_{23} \\
r_{13}-r_{31} \\
r_{21}-r_{12}
\end{array}\right]=-\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Notice that for a symmetric rotation (i.e., a rotation by π) \mathbf{v} is undefined, so this formula is not applicable. As was noted before, all the angle-axis (for $-\pi<\theta \leq \pi)$ solutions to \mathbf{R} are given by $\{(\theta, \mathbf{v}),(-\theta,-\mathbf{v})\}$.
(b) One way is to apply the formula

The other way is to use [1, Equation 7.74]:

$$
\mathbf{q}_{1,2}= \pm \frac{1}{2 \sqrt{\operatorname{trace} \mathbf{R}+1}}\left[\begin{array}{c}
\operatorname{trace} \mathbf{R}+1 \\
r_{32}-r_{23} \\
r_{13}-r_{31} \\
r_{21}-r_{12}
\end{array}\right]= \pm \frac{1}{2}\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
-1
\end{array}\right]
$$

Again, this formula works only for non-symmetric rotations.

References

[1] Tomas Pajdla, Elements of geometry for robotics, https://cw.fel.cvut.cz/b221/_media/courses/pkr/ pro-lecture-2021.pdf.

