
PKR Lab-07 Solution
Task 1. Consider motion given by a mapping of a general point X to point Y by

~yβ = R ~xβ + ~o ′β , (1)

where ~xβ, resp. ~yβ, are coordinate vectors representing point X, resp. point Y , in a coordinate system with an

orthonormal basis β. Matrix R and vector ~o ′ =
−−→
OO ′ are given as follows

R =

0 1 0
0 0 1
1 0 0

 ~o ′β =

 1
0
−1


1. Write down the matricidal equation determining the coordinates of points on the axis of motion.

2. Find all the points on the axis of motion.

Solution: The axis of motion is the line in R3 that is left invariant after applying Equation (1). The matrix
equation that determines the points on the axis of motion is [1, Equation (9.2)]:

(R− I)2~xβ = −(R− I)~o ′β

Substituting R and ~o ′β to it we obtain−1 1 0
0 −1 1
1 0 −1

2

~xβ = −

−1 1 0
0 −1 1
1 0 −1

 1
0
−1


 1 −2 1

1 1 −2
−2 1 1

 ~xβ =

 1
1
−2

 (2)

We can solve this system of linear equations by Gaussian elimination: 1 −2 1 1
1 1 −2 1
−2 1 1 −2

 ∼
 1 −2 1 1

0 3 −3 0
0 −3 3 0

 ∼
 1 −2 1 1

0 1 −1 0
0 0 0 0


Denote ~xβ =

[
x1 x2 x3

]>
. From the second row x2 − x3 = 0 we conclude that x2 = x3 and we let x3 to be

any real number t. From the first row x1 − 2x2 + x3 = 1 we conclude that x1 = 2x2 − x3 + 1 = t+ 1. Thus, the
solutions to (2) are

L =


t+ 1

t
t

 ∣∣∣ t ∈ R

 =


1

0
0

+ t

1
1
1

 ∣∣∣ t ∈ R


We may verify that the line L is left invariant under the motion given by (1). For this we pick a general point
from L and substitute it into (1):

R

1
0
0

+ t

1
1
1

+ ~o ′β =

0 1 0
0 0 1
1 0 0

1
0
0

+ t

1
1
1

+

 1
0
−1

 =

0
0
1

+ t

1
1
1

+

 1
0
−1

 =

1
0
0

+ t

1
1
1


We see that L is left invariant (in this case even point-wise, since ~o ′β is perpendicular to the rotation axis of
R). �

Task 2. Consider unit quaternion

q =
1

3

[
0 −1 −2 −2

]
(a) For the rotation given by q, find all pairs of (θ,v) corresponding to its rotation angle −π < θ ≤ π and its

rotation axis generated by unit vector v,

(b) Find the rotation matrix corresponding to q.
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Solution:

(a) The quaternion is defined by

q =

[
cos θ2
sin θ

2v

]
where (θ,v) define the angle and the normalized axis of rotation. That’s why

cos
θ

2
= 0⇒ sin

θ

2
= ±1

We, e.g., take the pair (cos θ2 , sin
θ
2 ) = (0, 1) which gives

θ

2
=
π

2
+ 2πk, k ∈ Z ⇐⇒ θ = π + 4πk, k ∈ Z

By the task we want −π < θ ≤ π, so θ = π. We compute the normalized axis of rotation v by dividing
the last 3 coordinates of q by sin θ

2 :

v =
1

3

[
−1 −2 −2

]>
.

If (θ,v) defines q for −π < θ ≤ π, then all pairs (θ,v) with −π < θ ≤ π that define the rotation
given by q are determined by {(θ,v), (−θ,−v)}. Since for θ = π the value −θ = −π jumps out of the
interval (−π, π], then we simply add 2π to it, since it doesn’t change the rotation matrix (according to
the Rodriguez formula [1, Equation 7.22]). Hence, the answer is{(

π,−
[
1
3

2
3

2
3

]>)
,
(
π,
[
1
3

2
3

2
3

]>)}
.

(b) The rotation matrix is given by the Rodriguez formula [1, Equation 7.22]:

R = cos θI + (1− cos θ)vv> + sin θ
[
v
]
×

R = −I + 2 · 1

9
·

1
2
2

 [1 2 2
]

=

−1
−1

−1

+
2

9

1 2 2
2 4 4
2 4 4

 =
1

9

−7 4 4
4 −1 8
4 8 −1


Another way to obtain R is to use the formula in terms of quaternions [1, Equation 7.67]:

R =

q21 + q22 − q23 − q24 2(q2q3 − q1q4) 2(q2q4 + q1q3)
2(q2q3 + q1q4) q21 − q22 + q23 − q24 2(q3q4 − q1q1)
2(q2q4 − q1q3) 2(q3q4 + q1q2) q21 − q22 − q23 + q24

 =
1

9

−7 4 4
4 −1 8
4 8 −1


�

Task 3. Consider rotation matrix

R =

0 1 0
0 0 1
1 0 0


(a) Find its (unit) rotation axis and angle −π < θ ≤ π.

(b) Find all unit quaternions corresponding to R.

Solution:

(a) The rotation axis is given by the eigenvector corresponding to the eigenvalue λ = 1:

Rv = v ⇐⇒ (R− I)v = 0

We solve the linear homogeneous system of equations:−1 1 0
0 −1 1
1 0 −1

 ∼
−1 1 0

0 −1 1
0 1 −1

 ∼
−1 1 0

0 −1 1
0 0 0


2



We obtain 1 zero row in the row echelon form of R− I indicating that dim ker(R− I) = 1. Let’s denote
v =

[
v1 v2 v3

]
. Then we let v3 to be any real number t. From the second equation −v2 + v3 = 0 we

obtain v2 = v3 = t. From the first −v1 + v2 = 0 we obtain v1 = v2 = t. Thus, all the solutions to this
linear system may be described by 

tt
t

 ∣∣∣ t ∈ R


Out of this set we take one of unit norm, e.g.,

v = − 1√
3

1
1
1


The rotation angle can be determined from the Rodriguez formula:

R = cos θI + (1− cos θ)vv> + sin θ
[
v
]
×0 1 0

0 0 1
1 0 0

 = cos θ

1
1

1

+
1

3
(1− cos θ)

1 1 1
1 1 1
1 1 1

+
1√
3

sin θ

 0 1 −1
−1 0 1

1 −1 0


Out of these 9 equations we pick 2 given by the elements (1, 1) and (1, 2):

(1, 1) : 0 = cos θ +
1

3
(1− cos θ) ⇐⇒ cos θ = −1

2

(1, 2) : 1 =
1

3
(1− cos θ) +

1√
3

sin θ ⇐⇒ sin θ =

√
3

2

from which we deduce that θ = 2π
3 . Another way to compute the rotation axis and angle is to apply the

formula [1, Equations 7.40, 7.41] for non-symmetric rotations:

θ = arccos

(
1

2
traceR− 1

)
=

2π

3
, v =

1

2 sin θ

r32 − r23r13 − r31
r21 − r12

 = − 1√
3

1
1
1


Notice that for a symmetric rotation (i.e., a rotation by π) v is undefined, so this formula is not applicable.
As was noted before, all the angle-axis (for −π < θ ≤ π) solutions to R are given by {(θ,v), (−θ,−v)}.

(b) One way is to apply the formula

q1,2 = ±
[

cos θ2
sin θ

2v

]
= ±

[
cos π3
sin π

3v

]
= ±


1
2

−
√
3
2

1√
3

1
1
1


 = ±1

2


1
−1
−1
−1


The other way is to use [1, Equation 7.74]:

q1,2 = ± 1

2
√

traceR + 1


traceR + 1
r32 − r23
r13 − r31
r21 − r12

 = ±1

2


1
−1
−1
−1


Again, this formula works only for non-symmetric rotations.
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