PKR Lab-06 Solution

Task 1. Consider the rotation matrix with rotation axis generated by vector $\mathbf{r}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\top}$ that maps vector $\mathbf{x}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{\top}$ to $\mathbf{y}=\mathbf{R} \mathbf{x}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\top}$.
(a) Find its rotation angle $-\pi<\theta \leq \pi$,
(b) Find its rotation matrix \mathbf{R},
(c) Find eigenvalues of \mathbf{R}.

Solution: (Method 1). We use the angle-axis parametrization of the rotation:

$$
\begin{equation*}
\mathbf{R}=\cos \theta \mathbf{I}+(1-\cos \theta) \mathbf{v} \mathbf{v}^{\top}+\sin \theta[\mathbf{v}]_{\times} \tag{1}
\end{equation*}
$$

where $\mathbf{v}=\frac{1}{\sqrt{3}}\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ is the normalized axis of rotation. By the task, $\mathbf{R}\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{\top}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\top}$. Hence, multiplying both sides of Equation (1) by $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{\top}$ we get

$$
\begin{gather*}
{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\mathbf{R}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left(\cos \theta \mathbf{I}+(1-\cos \theta) \mathbf{v} \mathbf{v}^{\top}+\sin \theta[\mathbf{v}]_{\times}\right)\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]} \\
{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\cos \theta\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+\frac{1-\cos \theta}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\frac{\sin \theta}{\sqrt{3}}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]} \tag{2}
\end{gather*}
$$

From the last equation of Equation (2)

$$
0=\cos \theta+\frac{1-\cos \theta}{3}
$$

we can express

$$
\cos \theta=-\frac{1}{2}
$$

Substituting it to the second equation in $\sqrt[2]{2}$ we get

$$
0=\frac{1}{2}-\frac{\sin \theta}{\sqrt{3}}
$$

from which we get

$$
\sin \theta=\frac{\sqrt{3}}{2}
$$

The rotation angle then equals

$$
\theta=\operatorname{atan} 2(\sin \theta, \cos \theta)=\operatorname{atan} 2\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)=\frac{2 \pi}{3}
$$

We get the rotation matrix by substituting \mathbf{v} and θ to Equation (1):

$$
\mathbf{R}=-\frac{1}{2}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{rrr}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

The eigenvalues of \mathbf{R} are the roots of the characteristic polynomial of \mathbf{R} :

$$
p(\lambda)=\operatorname{det}(\lambda \mathbf{I}-\mathbf{R})=\lambda^{3}-1
$$

whose roots are the cubic roots of unity $1, e^{2 \pi i \frac{1}{3}}, e^{2 \pi i \frac{2}{3}}$.
(Method 2). We now apply a bit different method to find θ. We know that the rotation angle θ is the angle between \mathbf{p} and its image \mathbf{q} under the rotation for some $\mathbf{p} \perp \mathbf{r}$. We claim that

$$
\mathbf{p}=[\mathbf{r}]_{\perp} \mathbf{x}, \quad \mathbf{q}=[\mathbf{r}]_{\perp} \mathbf{y}, \quad \text { for } \quad[\mathbf{r}]_{\perp}=\mathbf{I}-\frac{\mathbf{r} \mathbf{r}^{\top}}{\|\mathbf{r}\|^{2}}
$$

Obviously, $\mathbf{p} \perp \mathbf{r}$ since

$$
\mathbf{r}^{\top} \mathbf{p}=\mathbf{r}^{\top}\left(\mathbf{I}-\frac{\mathbf{r r}^{\top}}{\|\mathbf{r}\|^{2}}\right) \mathbf{x}=\left(\mathbf{r}^{\top}-\mathbf{r}^{\top}\right) \mathbf{x}=\mathbf{0}^{\top} \mathbf{x}=0
$$

Also, $\mathbf{q}=[\mathbf{r}]_{\perp} \mathbf{y}$ since

$$
\mathbf{q}=\mathbf{R p}=\mathbf{R}\left(\mathbf{I}-\frac{\mathbf{r r}^{\top}}{\|\mathbf{r}\|^{2}}\right) \mathbf{x}=\left(\mathbf{R}-\mathbf{R} \frac{\mathbf{r r}^{\top}}{\|\mathbf{r}\|^{2}}\right) \mathbf{x}=\left(\mathbf{R}-\frac{\mathbf{r r}^{\top}}{\|\mathbf{r}\|^{2}}\right) \mathbf{x} \stackrel{(1)}{=}\left(\mathbf{I}-\frac{\mathbf{r r}^{\top}}{\|\mathbf{r}\|^{2}}\right) \mathbf{R} \mathbf{x}=[\mathbf{r}]_{\perp} \mathbf{y}
$$

where $\stackrel{(1)}{=}$ follows from the fact that $\mathbf{r}^{\top} \mathbf{R}=\mathbf{r}^{\top}$. We compute

$$
\begin{gathered}
{[\mathbf{r}]_{\perp}=\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right]-\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]} \\
\mathbf{p}=[\mathbf{r}]_{\perp} \mathbf{x}=\frac{1}{3}\left[\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{r}
-1 \\
-1 \\
2
\end{array}\right] \\
\mathbf{q}=\mathbf{R p}=[\mathbf{r}]_{\perp} \mathbf{y}=\frac{1}{3}\left[\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\frac{1}{3}\left[\begin{array}{r}
2 \\
-1 \\
-1
\end{array}\right]
\end{gathered}
$$

The cosine of an angle between \mathbf{p} and \mathbf{q} can be computed as

$$
\cos \theta=\cos \angle(\mathbf{p}, \mathbf{q})=\frac{\mathbf{p}^{\top} \mathbf{q}}{\|\mathbf{p}\|\|\mathbf{q}\|}=-\frac{1}{2} \Rightarrow \theta=\arccos \left(-\frac{1}{2}\right)=\pi-\arccos \left(\frac{1}{2}\right)=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}
$$

We now must determine the correct direction of the rotation axis: its direction is given by the right hand rule, where 4 fingers go from \mathbf{p} to \mathbf{q} in the direction of the smallest angle (namely, $\theta=\arccos \left(\frac{\mathbf{p}^{\top} \mathbf{q}}{\|\mathbf{p}\|\|\mathbf{q}\|}\right)$) and the thumb shows the direction of \mathbf{v}, since only in that case [1, Equation (7.14)] holds true (where we consider \vec{v} as \mathbf{v}. Algebraically, $\mathbf{v}=a \mathbf{r}$ must be chosen in such a way that

1. $\|\mathbf{v}\|=1$,
2. $\mathbf{v}^{\top}(\mathbf{p} \times \mathbf{q})>0$

The cross product $\mathbf{p} \times \mathbf{q}$ equals

$$
\mathbf{p} \times \mathbf{q}=\left[\begin{array}{l}
p_{2} q_{3}-p_{3} q_{2} \\
p_{3} q_{1}-p_{1} q_{3} \\
p_{1} q_{2}-p_{2} q_{1}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Then, obviously, $a=\frac{1}{\sqrt{3}}$, since then $\|\mathbf{v}\|=1$ and

$$
\mathbf{v}^{\top}(\mathbf{p} \times \mathbf{q})=\frac{1}{3 \sqrt{3}}\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{3}}>0
$$

i.e. $\mathbf{v}=\frac{1}{\sqrt{3}}\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$. The rotation matrix then, according to Equation (1), equals

$$
\mathbf{R}=\cos \theta \mathbf{I}+(1-\cos \theta) \mathbf{v v}^{\top}+\sin \theta[\mathbf{v}]_{\times}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Remark. Notice that in Method 1 we first pick unit $\mathbf{v}=a \mathbf{r}$ (doesn't matter in which direction) and then find θ accordingly to (1). If we first picked $\mathbf{v}=-\frac{1}{\sqrt{3}}\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$, then we would obtain $\theta=-\frac{2 \pi}{3}$. While in Method 2 we first pick $\theta \in[0, \pi]$ (since arccos returns values from this interval) and then choose $\mathbf{v}=a \mathbf{r}$ according to the right hand rule. We note that the map $(\theta, \mathbf{v}) \mapsto \mathbf{R}$ is 2-to-1 except for the identity rotation: if (θ, \mathbf{v}) generate \mathbf{R}, then $(-\theta,-\mathbf{v})$ generate it as well and there no other angle-axis pairs that generate the same \mathbf{R}.

Task 2. Find all 2×2 rotation matrices \mathbf{R} such that

$$
\mathbf{R R}=\mathbf{R}^{\top}
$$

Solution: By multiplying by \mathbf{R} both sides we obtain

$$
\mathbf{R}^{3}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]^{3}=\mathbf{I} \Longleftrightarrow\left[\begin{array}{rr}
\cos 3 \theta & -\sin 3 \theta \\
\sin 3 \theta & \cos 3 \theta
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \Longleftrightarrow \cos 3 \theta=1, \sin 3 \theta=0
$$

which means that

$$
3 \theta=2 k \pi, k \in \mathbb{Z} \Longleftrightarrow \theta=\frac{2 k \pi}{3}, k \in \mathbb{Z}
$$

All rotation matrices \mathbf{R} can be obtained by taking $k=0,1,2$, i.e.

$$
\mathbf{R}_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \mathbf{R}_{2}=\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right], \quad \mathbf{R}_{3}=\left[\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right]
$$

References

[1] Tomas Pajdla, Elements of geometry for robotics, https://cw.fel.cvut.cz/b221/_media/courses/pkr/ pro-lecture-2021.pdf.

