Inverse Kinematics of 6R Manipulator by Newton's Method

November 23, 2022

Newton's Method (Example)

Task: find a root of $f(x)=x^{2}-2$
Given: starting point $x_{0}=1$, number of steps $m=3$, tolerance $e=10^{-5}$

Newton's step:

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

Steps:

$$
\begin{gathered}
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=1-\frac{-1}{2 \cdot 1}=1.5 \\
x_{2}=1.5-\frac{0.25}{3}=1.416667 \\
x_{3}=\ldots=1.414216
\end{gathered}
$$

The norm $\left\|f\left(x_{3}\right)\right\|=6 \cdot 10^{-6} \leq e \Rightarrow x_{3}$ is a good approximation of a root

Newton's Method (Algorithm)

Algorithm 1: Newton's Method

Input: $\mathbf{f}(\mathbf{x})=\left(f_{1}(\mathbf{x}), \ldots, f_{s}(\mathbf{x})\right), \mathbf{x}_{0} \in \mathbb{R}^{n}, m \in \mathbb{R}, e \in \mathbb{R}_{+}$

Output: $\left(s, \mathbf{x}^{*}\right)$, where s denotes the state of convergence and $\mathbf{x}^{*} \in \mathbb{R}^{n}$. If the algorithm converged in m steps with tolerance e, then $s=$ True and \mathbf{x}^{*} is the approximated solution. Otherwise, $s=$ False and \mathbf{x}^{*} is the point obtained in the last iteration.
$1 \mathbf{x}^{*} \leftarrow \mathbf{x}_{0}$
2 for $(k \leftarrow 0 ; k<m ; k \leftarrow k+1)$
$3 \quad$ if $\left\|\mathbf{f}\left(\mathbf{x}^{*}\right)\right\| \leq e$ then
$4 \quad$ return (True, \mathbf{x}^{*})
$\left.\mathbf{5} \quad \mathbf{J} \leftarrow \frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right|_{\mathbf{x}^{*}}$
$6 \quad \mathbf{x}^{*} \leftarrow \mathbf{x}^{*}-\mathbf{J}^{+} \mathbf{f}\left(\mathbf{x}^{*}\right)$
7 return (False, \mathbf{x}^{*})

Equations for \mathbf{R}_{e} and t_{e}

$$
\begin{gathered}
\mathbf{M}_{e}=\mathbf{M}_{1}^{0} \mathbf{M}_{2}^{1} \mathbf{M}_{3}^{2} \mathbf{M}_{4}^{3} \mathbf{M}_{5}^{4} \mathbf{M}_{6}^{5} \\
\underbrace{\left[\begin{array}{cc}
\mathbf{R}_{e} & \mathbf{t}_{e} \\
\mathbf{0}^{\top} & 1
\end{array}\right]}_{\substack{\text { pose of the } \\
\text { end effector }}}=\prod_{i=1}^{6} \mathbf{M}_{i}^{i-1}(\theta_{i}+\underbrace{\theta_{i_{\text {offset }}}, d_{i}, a_{i}, \alpha_{i}}_{\text {DH parameters }})
\end{gathered}
$$

Hence,

$$
\mathbf{R}_{e}=\underbrace{\prod_{i=1}^{6} \mathbf{R}_{i}^{i-1}\left(\theta_{i}\right)}_{\mathbf{R}(\boldsymbol{\theta})}, \quad \overline{\mathbf{t}_{e}}=\left[\begin{array}{c}
\mathbf{t}_{e} \\
1
\end{array}\right]=\underbrace{\prod_{i=1}^{6} \mathbf{M}_{i}^{i-1}\left(\theta_{i}\right)\left[\begin{array}{l}
\mathbf{0} \\
1
\end{array}\right]}_{\overline{\mathbf{t}}(\boldsymbol{\theta})=\left[\begin{array}{c}
\mathbf{t}(\boldsymbol{\theta}) \\
1
\end{array}\right]},
$$

where $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{6}\right)$.

IKT Equations

The IKT equations are:

$$
\mathbf{f}(\boldsymbol{\theta})=\left[\begin{array}{c}
\operatorname{vec}\left(\mathbf{R}(\boldsymbol{\theta})-\mathbf{R}_{e}\right) \\
\mathbf{t}(\boldsymbol{\theta})-\mathbf{t}_{e}
\end{array}\right]=\mathbf{0}
$$

where

$$
\operatorname{vec}(\mathbf{R})=\left[\begin{array}{lllllllll}
r_{11} & r_{21} & r_{31} & r_{12} & r_{22} & r_{32} & r_{13} & r_{23} & r_{33}
\end{array}\right]^{\top}
$$

The Jacobian is:

$$
\mathbf{J}(\boldsymbol{\theta})=\frac{\partial \mathbf{f}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}=\left[\begin{array}{c}
\frac{\partial \mathrm{vec}(\mathbf{R}(\boldsymbol{\theta}))}{\partial \boldsymbol{\theta}} \\
\frac{\partial \mathbf{t}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}
\end{array}\right] \in C(\boldsymbol{\theta}, \mathbb{R})^{12 \times 6}
$$

since \mathbf{R}_{e} and \mathbf{t}_{e} are fixed and don't depend on $\boldsymbol{\theta}$.

Jacobian

By taking partial derivative of $\mathbf{R}(\boldsymbol{\theta})$ w.r.t. θ_{k} we get:

$$
\frac{\partial \mathbf{R}(\boldsymbol{\theta})}{\partial \theta_{k}}=\prod_{i=1}^{k-1} \mathbf{R}_{i}^{i-1}\left(\theta_{i}\right) \cdot \frac{\partial \mathbf{R}_{k}^{k-1}\left(\theta_{k}\right)}{\partial \theta_{k}} \cdot \prod_{i=k+1}^{6} \mathbf{R}_{i}^{i-1}\left(\theta_{i}\right) \in C(\boldsymbol{\theta}, \mathbb{R})^{3 \times 3}
$$

By taking partial derivative of $\overline{\mathbf{t}}(\boldsymbol{\theta})$ w.r.t. θ_{k} we get:

$$
\frac{\partial \overline{\mathbf{t}}(\boldsymbol{\theta})}{\partial \theta_{k}}=\prod_{i=1}^{k-1} \mathbf{M}_{i}^{i-1}\left(\theta_{i}\right) \cdot \frac{\partial \mathbf{M}_{k}^{k-1}\left(\theta_{k}\right)}{\partial \theta_{k}} \cdot \prod_{i=k+1}^{6} \mathbf{M}_{i}^{i-1}\left(\theta_{i}\right)\left[\begin{array}{l}
\mathbf{0} \\
1
\end{array}\right] \in C(\boldsymbol{\theta}, \mathbb{R})^{4}
$$

