# Inverse Kinematics of 6R Manipulator by Gröbner Basis Computation

November 19, 2022

## Mathematical Formulation of IKT

$$\mathbf{M}_e = \mathbf{M}_1^0 \mathbf{M}_2^1 \mathbf{M}_3^2 \mathbf{M}_4^3 \mathbf{M}_5^4 \mathbf{M}_6^5$$
 
$$\underbrace{\begin{bmatrix} \mathbf{R}_e & \mathbf{t}_e \\ \mathbf{0}^\top & 1 \end{bmatrix}}_{\text{pose of the end effector}} = \prod_{i=1}^6 \mathbf{M}_i^{i-1} (\boldsymbol{\theta_i} + \underbrace{\boldsymbol{\theta_{i_{\text{offset}}}}, d_i, a_i, \alpha_i}_{\text{DH parameters}})$$
 
$$\underbrace{\prod_{i=1}^6 \mathbf{M}_i^{i-1} (\boldsymbol{\theta_i} + \boldsymbol{\theta_{i_{\text{offset}}}}, d_i, a_i, \alpha_i) - \begin{bmatrix} \mathbf{R}_e & \mathbf{t}_e \\ \mathbf{0}^\top & 1 \end{bmatrix}}_{12 \text{ nonzero functions } \mathbf{f}(\boldsymbol{\theta})} = \mathbf{O}$$

# Symbolic formulation

Every matrix  $\mathbf{M}_i^{i-1}$  can be decomposed as

$$\begin{bmatrix} \cos(\theta_i + \theta_{i_{\text{offset}}}) & -\sin(\theta_i + \theta_{i_{\text{offset}}}) & 0 & 0 \\ \sin(\theta_i + \theta_{i_{\text{offset}}}) & \cos(\theta_i + \theta_{i_{\text{offset}}}) & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & \cos\alpha_i & -\sin\alpha_i & 0 \\ 0 & \sin\alpha_i & \cos\alpha_i & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

New variables:

$$c_i = \cos(\theta_i + \theta_{i_{\text{offset}}}), \quad s_i = \sin(\theta_i + \theta_{i_{\text{offset}}})$$

New polynomial equations:

$$\begin{cases} \prod_{i=1}^{6} \mathbf{M}_{i}^{i-1}(\boldsymbol{c_{i}}, \boldsymbol{s_{i}}, d_{i}, a_{i}, \alpha_{i}) - \begin{bmatrix} \mathbf{R}_{e} & \mathbf{t}_{e} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} = \mathbf{O} \\ \frac{\mathbf{c_{i}}^{2} + \boldsymbol{s_{i}}^{2}}{\mathbf{c_{i}}^{2} + \mathbf{s_{i}}^{2}} = 1, \quad i = 1, \dots, 6 \end{cases}$$

Compute  $\theta_i$  from  $c_i$  and  $s_i$ :

$$\theta_i = \operatorname{atan2}(s_i, c_i) - \theta_{i_{\text{offset}}}$$

# Simplified equations

The inverse matrix  $\left(\mathbf{M}_{i}^{i-1}\right)^{-1}$  has the form:

$$\begin{bmatrix} 1 & 0 & 0 & -a_i \\ 0 & \cos \alpha_i & \sin \alpha_i & 0 \\ 0 & -\sin \alpha_i & \cos \alpha_i & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_i & s_i & 0 & 0 \\ -s_i & c_i & 0 & 0 \\ 0 & 0 & 1 & -d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Since it is polynomial in  $c_i$  and  $s_i$ , the former polynomial equations of IKT of degree 6 in  $c_i$  and  $s_i$  can be simplified to the following ones of degree 3:

$$\prod_{i=4}^{6} \mathbf{M}_{i}^{i-1}(\boldsymbol{c_{i}}, \boldsymbol{s_{i}}, d_{i}, a_{i}, \alpha_{i}) - \left(\prod_{i=1}^{3} \mathbf{M}_{i}^{i-1}(\boldsymbol{c_{i}}, \boldsymbol{s_{i}}, d_{i}, a_{i}, \alpha_{i})\right)^{-1} \begin{bmatrix} \mathbf{R}_{e} & \mathbf{t}_{e} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} = \mathbf{O},$$

$$c_i^2 + s_i^2 = 1, \quad i = 1, \dots, 6$$

## Solvability of equations

- Groebner Basis computation is done in exact arithmetics over the rational numbers and therefore the rational input must be provided.
- ② At the same time, the input must satisfy all identities on sines, cosines and rotations, otherwise the equations would have no solution.

#### That's why,

- lacktriangledown the parameters  $d_i$ ,  $a_i$ ,  $\mathbf{t}_e$  must be given using Fraction numbers
- $\cos \alpha_i \ {
  m and} \ {
  m sin} \ lpha_i \ {
  m must} \ {
  m be} \ {
  m given} \ {
  m as} \ {
  m a} \ {
  m tuple} \ {
  m of} \ {
  m Fraction} \ {
  m numbers} \ {
  m such} \ {
  m that} \ {
  m the} \ {
  m sum} \ {
  m of} \ {
  m their} \ {
  m squares} \ {
  m is} \ {
  m exactly} \ 1$
- $oldsymbol{0}$  the rotation matrix  $\mathbf{R}_e$  must be given using Fraction numbers such that  $\mathbf{R}_e^{\top}\mathbf{R}_e = \mathbf{I}$  and  $\det \mathbf{R}_e = 1$  hold exactly.

# Rational approximation of a floating point number

**Input**: floating point number n, positive tolerance tol **Output**: fraction number f such that |f - n| < tol **Steps**:

**1** If  $tol \ge 1$ : a rational approximation f of n is:

$$f = \frac{\lfloor n \rfloor}{1}$$

② If tol < 1: represent tol in scientific notation and take the exponent e, i.e.

$$tol = m \times 10^e, \quad m \in [1, 10), \ e \in \mathbb{Z}_{<0}$$

and take a rational approximation f of n given by:

$$f = \frac{\lfloor n \cdot 10^{-e} \rfloor}{10^{-e}}$$

# Rational approximation of a floating point number

#### Example

Let the floating point number be given by

$$n = 10.123456789$$

and the tolerance of the rational approximation be given by another floating point number

$$tol = 0.000025932 = 2.5932 \times 10^{-5} \Rightarrow e = -5$$

The fraction which approximates n is

$$f = \frac{\lfloor n \cdot 10^{-e} \rfloor}{10^{-e}} = \frac{\lfloor 10.123456789 \cdot 10^5 \rfloor}{10^5} = \frac{1012345}{10^5}$$

$$|f - n| = |10.12345 - 10.123456789| = 0.000006789 < tol$$

#### Rational sine and cosine

Rational parametrization of the unit circle:

$$\cos \theta = \frac{1 - t^2}{1 + t^2}, \quad \sin \theta = \frac{2t}{1 + t^2}, \quad t \in \mathbb{Q}$$

Trigonometric meaning of t:

$$\tan\frac{\theta}{2} = \frac{1 - \cos\theta}{\sin\theta} = \frac{1 - \frac{1 - t^2}{1 + t^2}}{\frac{2t}{1 + t^2}} = \frac{2t^2}{2t} = t$$

#### Rational sine and cosine

**Input**: floating point number  $\theta \in (-\pi, \pi]$ , positive tolerance tol **Output**: rational approximations c, s of  $\cos \theta, \sin \theta$  such that

$$c^2 + s^2 = 1$$
 (exactly)

#### Steps:

• If  $\cos \theta + 1 < tol$ , then return

$$c = -1, s = 0$$

- 2 Compute a rational approximation t of  $\tan \frac{\theta}{2}$
- **3** Compute cosine and sine corresponding to t:

$$c = \frac{1 - t^2}{1 + t^2}, \quad s = \frac{2t}{1 + t^2}$$

#### Rational sine and cosine

#### Example

Let the angle and the tolerance be given by

$$\theta = 1.2345, \quad tol = 0.0023$$

The rational approximation of  $\tan \frac{\theta}{2}$  is given by

$$\begin{split} t &= \mathtt{rat\_approx} \left( \tan \frac{\theta}{2}, tol \right) = \mathtt{rat\_approx} \left( 0.709766, 0.0023 \right) = \\ &= \frac{\left\lfloor 0.709766 \cdot 10^3 \right\rfloor}{10^3} = \frac{709}{1000} \\ c &= \frac{1 - t^2}{1 + t^2} = \frac{497319}{1502681} \approx \cos \theta, \ \ s = \frac{2t}{1 + t^2} = \frac{1418000}{1502681} \approx \sin \theta \end{split}$$

#### Rational $3 \times 3$ rotation matrix

Parametrization of exact  $3 \times 3$  rotation matrices:

$$\mathbf{R} = \frac{1}{\sum_{i=1}^{4} q_i^2} \begin{bmatrix} q_1^2 + q_2^2 - q_3^2 - q_4^2 & 2(q_2q_3 - q_1q_4) & 2(q_2q_4 + q_1q_3) \\ 2(q_2q_3 + q_1q_4) & q_1^2 - q_2^2 + q_3^2 - q_4^2 & 2(q_3q_4 - q_1q_2) \\ 2(q_2q_4 - q_1q_3) & 2(q_3q_4 + q_1q_2) & q_1^2 - q_2^2 - q_3^2 + q_4^2 \end{bmatrix},$$

$$q_1, q_2, q_3, q_4 \in \mathbb{O}$$

In the next slide we will use the function q2r which is defined by the above formula.

## Rational $3 \times 3$ rotation matrix

#### **Algorithm 1:** Rational $3 \times 3$ rotation matrix

**Input:** vector of float numbers  $\mathbf{q} = \begin{bmatrix} q_1 & q_2 & q_3 & q_4 \end{bmatrix}^\top$  with  $\|\mathbf{q}\| \approx 1$ , positive tolerance tol

**Output:**  $3 \times 3$  matrix **R** with fraction numbers such that

$$\mathbf{R}^{\top}\mathbf{R} = \mathbf{I}, \text{ det } \mathbf{R} = 1 \text{ (exactly)} \text{ & } \|\mathbf{R} - \mathsf{q2r}(\mathbf{q})\|_{\mathrm{F}} < tol$$

```
1 \ tol_q \leftarrow tol
 2 while TRUE do
            \mathbf{q}_{rat} \leftarrow \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}
 3
             for (k \leftarrow 1; k \leq 4; k \leftarrow k+1)
 4
             \mathbf{q}_{rat}[k] \leftarrow \mathtt{rat\_approx}(q_k, tol_g)
  5
            \mathbf{R} \leftarrow \mathtt{q2r}(\mathbf{q}_{rat})
 6
             if \|\mathbf{R} - \mathsf{q2r}(\mathbf{q})\|_{\mathbf{F}} < tol then
  7
                   return R
  8
             else
 9
                   tol_q \leftarrow \frac{tol_q}{10}
10
```

## Rational $3 \times 3$ rotation matrix

## Example

Let the quaternion and the tolerance be given by

$$\mathbf{q} = \begin{bmatrix} 0.748 & 0.654 & 0.108 & 0.012 \end{bmatrix}, \quad tol = 0.0011$$

The output of the above algorithm gives the rational rotation matrix

$$\mathbf{R} = \begin{bmatrix} \frac{243853}{249757} & \frac{30828}{249757} & \frac{44316}{249757} \\ \frac{39804}{249757} & \frac{35827}{249757} & -\frac{243948}{249757} \\ -\frac{36468}{249757} & \frac{245244}{249757} & \frac{30067}{249757} \end{bmatrix}$$

which comes from the (non-unit) rational quaternion

$$\mathbf{q}_{rat} = \begin{bmatrix} \frac{187}{250} & \frac{327}{500} & \frac{27}{250} & \frac{3}{250} \end{bmatrix} \approx \mathbf{q}$$

## Reduced lexicographic Gröbner basis of IKT equations

IKT equations:

$$\prod_{i=4}^{6} \mathbf{M}_{i}^{i-1}(\mathbf{c}_{i}, \mathbf{s}_{i}, d_{i}, a_{i}, \alpha_{i}) - \left(\prod_{i=1}^{3} \mathbf{M}_{i}^{i-1}(\mathbf{c}_{i}, \mathbf{s}_{i}, d_{i}, a_{i}, \alpha_{i})\right)^{-1} \begin{bmatrix} \mathbf{R}_{e} & \mathbf{t}_{e} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} = \mathbf{O},$$

$$\mathbf{c}_{i}^{2} + \mathbf{s}_{i}^{2} = 1, \quad i = 1, \dots, 6$$

For the following ordering of variables

$$c_1 > s_1 > \cdots > c_6 > s_6$$

the reduced lexicographic Gröbner basis of IKT equations looks like:

$$s_{6}^{16} + a_{1,15} \cdot s_{6}^{15} + a_{1,14} \cdot s_{6}^{14} + \dots + a_{1,1} \cdot s_{6} + a_{1,0}$$

$$c_{6} + a_{2,15} \cdot s_{6}^{15} + a_{2,14} \cdot s_{6}^{14} + \dots + a_{2,1} \cdot s_{6} + a_{2,0}$$

$$\vdots$$

$$c_{1} + a_{12,15} \cdot s_{6}^{15} + a_{12,14} \cdot s_{6}^{14} + \dots + a_{12,1} \cdot s_{6} + a_{12,0}$$