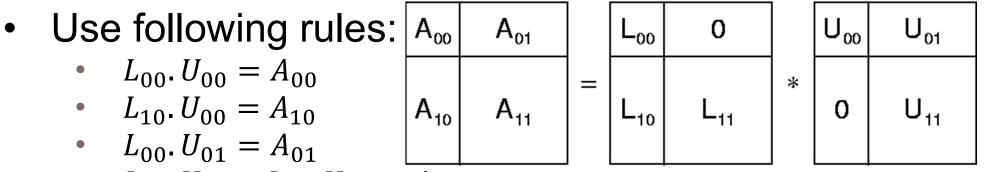

Parallel programming Matrix Algorithms in OpenMP and MPI

Today's topic

- Coding seminar
- Goals:
 - Practice the theory from the lectures
 - Practice OpenMP and MPI
- 4 Tasks
 - 2x OpenMP
 - 2x MPI



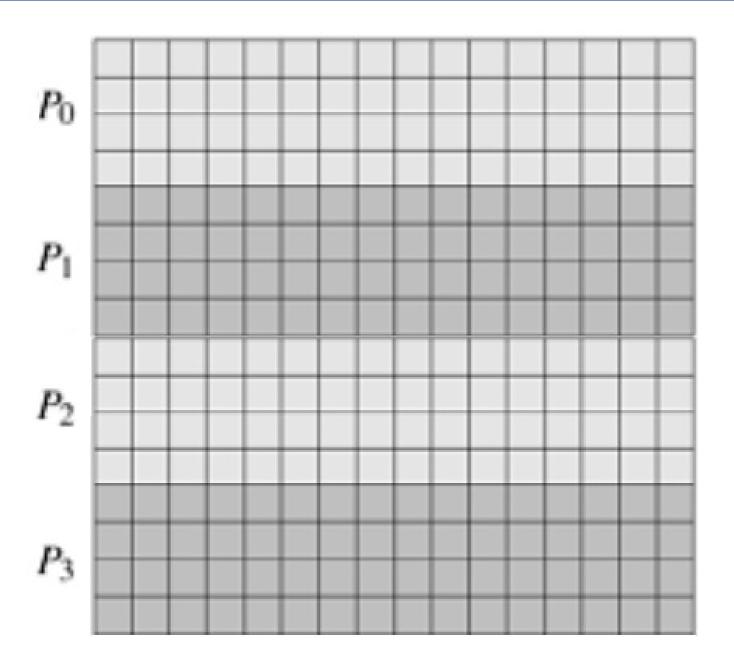
- Calculate matrix G as:
 - G = ((A * B) * (C * A)) + (D * E) + F
- Create task dependency graph and write parallel version of the code respecting task dependencies
- Use Instruction Level Parallelism
- Use OpenMP and the provided template

LU Factorization

- Compute LU Factorization of matrix A:
 - A = L * U
 - Where L is lower triangular matrix and U is upper triangular matrix

- L_{10} . $U_{01} + L_{11}$. $U_{11} = \overline{A_{11}}$
- Use OpenMP and write a parallel code
 - Experiment with scheduling policies
 - Experiment with chunk sizes
 - Experiment with different methods of parallelization

$\left[1 \right]$	0	0	0	$\left[u_{11} \right]$	u ₁₂	u ₁₃	$\left[u_{14} \right]$		a ₁₁	a ₁₂	a ₁₃	a_{14}
1 ₂₁	1	0	0	0	u 22	u 23	u ₂₄	_	a ₂₁	a ₂₂	a ₂₃	a ₂₄
1 ₃₁	l_{32}	1	0	0	0	u ₃₃	u ₃₄	—	a ₃₁	a ₃₂	a ₃₃	a ₃₄
$[1_{41}]$	l_{42}	l_{43}	1	0	0	0	u ₄₄	6	_a ₄₁	a ₄₂	a ₄₃	a_{24} a_{34} a_{44}



Gauss elimination

- Calculate Gauss Elimination of matrix A.
- Write parallel version of the code using MPI.
 - Split Matrix rows into P distinct blocks where P is the number of processes.
- Measure the speedup for different number of processors.
- Use row-wise distribution

Row-wise distribution

6/8

Cyclic Gauss elimination

- Calculate Cyclic Gauss Elimination of matrix A.
- Write parallel version of the code using MPI.
 - Split Matrix rows into P **intersected** blocks where P is the number of processes.
- Measure the speedup for different number of processors.
- Use cyclic block distribution

Cyclic Block Distribution

8/8