
Parallel programming
Programming with OpenMP

Part 1

2

Introduction to OpenMP

● OpenMP (Open Multi-Processing) provides constructs for parallel
programming in C++, C, and Fortran on Linux, MacOS, and Windows.

● A sequential code is transformed to a parallel one by adding compiler
pragmas, so if a compiler does not support OpenMP, the pragmas are
skipped and the output is a sequential program.

– OpenMP manual: 1.3 Execution model: The OpenMP API is intended to
support programs that will execute correctly both as parallel programs
(multiple threads of execution and a full OpenMP support library) and as
sequential programs (directives ignored and a simple OpenMP stubs
library). However, it is possible and permitted to develop a program that
executes correctly as a parallel program but not as a sequential program,
or that produces different results when executed as a parallel program
compared to when it is executed as a sequential program. Furthermore,
using different numbers of threads may result in different numeric results
because of changes in the association of numeric operations.

● OpenMP is widely used in software like Blender, fftw, OpenBLAS, and eigen
to accelerate computations.

● It is easy to use!

3

Execution model

● OpenMP program starts as a single thread only (master thread).
● It is executed sequentially until it reaches a parallel region defined by OpenMP

pragma.
● At the entry of parallel region, new team of threads is created. Each thread executes

concurrently with the others in order to share the work to be done.
● An OpenMP program alters between sequential regions and parallel regions.

4

Using OpenMP

● Include header file
#include <omp.h>

● Cmake (multi-platform)
find_package(OpenMP)
if (OPENMP_FOUND)
 set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}")
 set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
 set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${OpenMP_EXE_LINKER_FLAGS}")
endif()

● gcc
g++ -fopenmp ...

5

Hello world! In OpenMP...

lab_codes/src/HelloWorld.cpp

6

Runtime Library Routines

● omp_get_num_procs()

Returns the number of processors that are available to
the program

● omp_get_num_threads()

Returns the number of threads that are currently in the
team executing the parallel region from which it is called

● omp_get_thread_num()

Returns the calling thread index within the current team
● ...

7

#pragma omp parallel

#pragma omp parallel
{
 cout << "This is thread " << omp_get_thread_num() << " speaking" << endl;
}

cout << "Parallel block finished" << endl;

This is thread 0 speaking
This is thread 3 speaking
This is thread 2 speaking
This is thread 1 speaking
Parallel block finished

Output:

Creates team of threads and
starts executing them in parallel

Waits for threads to finish (barrier)

8

#pragma omp parallel

#pragma omp parallel num_threads(8)
{
 cout << "This is thread " << omp_get_thread_num() << " speaking" << endl;
}

This is thread 0 speaking
This is thread 3 speaking
This is thread 6 speaking
This is thread 1 speaking
This is thread 2 speaking
This is thread 7 speaking
This is thread 4 speaking
This is thread 5 speaking

Output:

Creates team of 8 threads

9

#pragma omp single

#pragma omp parallel
{
 cout << "This is thread " << omp_get_thread_num() << " speaking" << endl;

 #pragma omp single
 {
 cout << "The single part was done by thread " << omp_get_thread_num() << endl;
 }
}

This is thread 3 speaking
The single part was done by thread 3
This is thread 1 speaking
This is thread 2 speaking
This is thread 0 speaking

Output:

Block performed by single thread

10

#pragma omp sections

#pragma omp parallel
{
 #pragma omp sections
 {
 #pragma omp section
 {
 cout << "section 1, first: " << omp_get_thread_num() << endl;
 cout << "section 1, second: " << omp_get_thread_num() << endl;
 }

 #pragma omp section
 {
 cout << "section 2, first: " << omp_get_thread_num() << endl;
 cout << "section 2, second: " << omp_get_thread_num() << endl;
 }
 }
}

section 2, first: 0
section 2, second: 0
section 1, first: 1
section 1, second: 1

Output:

Each section is performed by only one thread

Waits for threads to finish (barrier).
Can be changed by
#pragma omp sections nowait

11

#pragma omp critical

int sum;

#pragma omp parallel
{
 #pragma omp critical
 {
 cout << "Thread " << omp_get_thread_num() << " in critical region" << endl;
 sum += omp_get_thread_num();
 }
}

cout << sum << endl;

Thread 1 in critical region
Thread 0 in critical region
Thread 3 in critical region
Thread 2 in critical region
6

Output:

Critical region, performed by all threads
but not at once (mutual exclusion)

12

#pragma omp barrier

#pragma omp parallel
{
 cout << "Before barrier thread " << omp_get_thread_num() << endl;
 #pragma omp barrier
 cout << "After barrier thread " << omp_get_thread_num() << endl;
}

Before barrier thread 0
Before barrier thread 3
Before barrier thread 1
Before barrier thread 2
After barrier thread 1
After barrier thread 2
After barrier thread 0
After barrier thread 3

Output:

Threads in team wait on the barrier

13

Example

● Write function for computing vector normalization. Split the
vector into two halves, each is processed by one section.

– You may use skeleton
lab_codes/src/VectorNormalization.cpp

14

Sequential summing of matrix rows

vector<vector<double>> matrix;

vector<double> rowSums(matrix.size(), 0);
for (int i = 0; i < matrix.size(); i++) {
 for (int j = 0; j < matrix[i].size(); j++) {
 rowSums[i] += matrix[i][j];
 }
}

double sum = 0.0;
for (int i = 0; i < matrix.size(); i++) {
 sum += rowSums[i];
}

3 1 2

4 5 3

1 6 5

3 1 2

4 5 3

1 6 5

3 1 2

4 5 3

1 6 5

3 1 2

4 5 3

1 6 5

3

4

1

6

12

12

3

4

1

6

12

12

30

15

Parallel summing of matrix rows

#pragma omp parallel
{
 #pragma omp for
 for (int i = 0; i < matrix.size(); i++) {
 for (int j = 0; j < matrix[i].size(); j++) {
 rowSums[i] += matrix[i][j];
 }
 }
}

Each iteration of for loop performed
by a thread (in parallel) from the team

A shorter code...

#pragma omp parallel for
for (int i = 0; i < matrix.size(); i++) {
 for (int j = 0; j < matrix[i].size(); j++) {
 rowSums[i] += matrix[i][j];
 }
}

Question: what happens if you write
the pragma on the inner loop?

16

If clause

#pragma omp parallel for if(matrix.size() >= 10)
for (int i = 0; i < matrix.size(); i++) {
 for (int j = 0; j < matrix[i].size(); j++) {
 rowSums[i] += matrix[i][j];
 }
}

Threads are only created
for large matrices. Small
matrices are summed
sequentially since it does
not pays off to create
threads.

17

Reductions

double sum = 0.0;
#pragma omp parallel for reduction(+:sum)
for (int i = 0; i < matrix.size(); i++) {
 sum += rowSums[i];
}

Operators:
+, *, -,
&, |, ^, &&, ||,
max, min

List of variables:
var

1
, var

2
, …, var

n

Useful for doing multiple
reductions at once

● Parallel aggregation of an expression, e.g., a sum

sum = rowSums[0] + rowSums[1] + rowSums[2] + ... + rowSums[matrix.size() - 1];

18

Collapse

int numRows = matrix.size();
int numCols = matrix[0].size();

double sum = 0.0;
#pragma omp parallel for collapse(2) reduction(+:sum)
for (int i = 0; i < numRows; i++) {
 for (int j = 0; j < numCols; j++) {
 sum += matrix[i][j];
 }
}

Collapse for loops into
one for distribution of the
work among threads

19

Data sharing

int a = 10;
int b = 100;
#pragma omp parallel for
for (int i = 0; i < 10; i++) {
 int c = a * b + i;
}

Shared among
threads

Thread private

● The sharing can be stated explicitly as a clause
– #pragma omp parallel for private(a, b)

● Variables a and b are private to each thread (without global initialization)

– #pragma omp parallel for firstprivate(a, b)
● Variables a and b are private to each thread (with global initialization)

– #pragma omp parallel for shared(a, b)
● Variables a and b are shared among threads

● The default policy can be set to
– #pragma omp parallel for default(shared)

● By default, all the variables outside of the parallel section are shared

– #pragma omp parallel for default(none)
● The programmer must explicitly state the sharing policy of the variables

20

Examples

● Vector normalization using parallel for (reduction, critical
section ...)

● Computation of pi using Monte Carlo

Samples from uniform
distribution

4⋅numSamplesInCircle
totalNumSamples

=π

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20

