
Parallel programming

Python Numba. Basics

/

Overview

 Numba package supports CUDA GPU programming

by directly compiling Python code into CUDA kernels

and device functions following the CUDA execution

model.

 Kernels written in Numba have direct access to

NumPy arrays.

 NumPy arrays are transferred between the CPU and

the GPU automatically.

2 15

/

Terminology

The main CUDA programming terms are listed below:

 host: the CPU

 device: the GPU

 host memory: the system main memory

 device memory: onboard memory on a GPU card

 kernels: a GPU function launched by the host and executed on

the device

 device function: a GPU function executed on the device which

can only be called from the device (i.e. from a kernel or another

device function)

3 15

/

Setting up python numba
 You can install the NVIDIA bindings with:

$ conda install nvidia::cuda-python

 Or if you are using pip:

$ pip install cuda-python

 Easy to work in Google Colab

 Additional info:

https://numba.readthedocs.io/en/stable/cuda/overview.html

4 15

/

CUDA Kernels

A kernel function is a GPU function that is meant to be called

from CPU code.

 kernels cannot explicitly return a value; all result data must be

written to an array passed to the function

 kernels explicitly declare their thread hierarchy when called

 the number of thread blocks

 the number of threads per block

 While a kernel is compiled once, it can be called multiple times

with different block sizes or grid sizes

5 15

/

Declaration/Invocation of the kernel

6 15

/

Blocks of threads

The block size – the number of threads per block - is

often crucial:

 Software side: the block size determines how many

threads access a given area of shared memory.

 Hardware side: the block size must be large enough

for full occupation of execution units; (recommendations

can be found in the CUDA C Programming Guide)

7 15

/

Positioning of threads and blocks

8 15

/

Positioning of threads and blocks

 Inside block/grid

 numba.cuda.threadIdx

 numba.cuda.blockIdx

 Dimensions

 numba.cuda.blockDim

 numba.cuda.gridDim

 Absolute positions

 numba.cuda.grid(ndim)

 numba.cuda.gridsize(ndim)

9 15

/

Data transfer

 Allocate device array

 numba.cuda.device_array(…)

 numba.cuda.device_array_like(…)

 Copy the data from host to device

 numba.cuda.to_device(…)

 Copy the data from device to host

 numba.cuda.copy_to_host(…)

10 15

/

Shared memory

 A limited amount of shared memory can be allocated on the

device to speed up access to data.

 That memory will be shared (i.e. both readable and writable)

amongst all threads belonging to a given block and has

faster access times than regular device memory.

 It also allows threads to cooperate on a given solution. You

can think of it as a manually-managed data cache.

 The memory is allocated once for the duration of the kernel

11 15

/

Shared memory and synchronization

 numba.cuda.shared.array(shape, type)

 Allocate a shared array of the given shape and type on the device.

 The function must be called from the device

 numba.cuda.syncthreads()

 Synchronize all threads in the same thread block.

 This function implements the pattern of barrier

12 15

/

Local memory

 Local memory is the memory area private to a thread:

 numba.cuda.local.array(shape, type)

 Using local memory helps to allocate some scratchpad

area when scalar local variables are not enough.

 The memory is allocated once for the duration of the

kernel

13 15

/

Constant memory

 Constant memory is an area of memory that is read

only, cached and off-chip:

 numba.cuda.const.array_like(arr)

 Accessible by all threads

 Allocated from the host

14 15

/

References

 Fundamental tutorial on numba:

https://numba.readthedocs.io/en/stable/cuda/index.html

 Selected pages:

https://numba.readthedocs.io/en/stable/cuda/kernels.html

https://numba.readthedocs.io/en/stable/cuda/memory.html

15 15

