Parallel prOQramm'_ngS
Python Numba. Basic

Wiy
v
Wiy,

"u“
Ty - Il" 2!

[} P -
U SR v 1|u -
thy 'y . 1 4

L -
RNy, : ‘ I v | SSER
i il M‘T' Qo

i 1 iz b
Wiy,

0. WEINE
" PR | i

— e
] el - "

R E gy d
' ; :
" Mu‘.".“"”

-
hrnilL
u | l.:.‘ |
——— R -
TS e e

i
'l
- W
-
i.1)4 ¥ =,
= e
hbaoa Bl daul ~L o, 2 A
(]]

Overview

» Numba package supports CUDA GPU programming
by directly compiling Python code into CUDA kernels
and device functions following the CUDA execution

model.

> Kernels written in Numba have direct access to

NumPy arrays.

» NumPy arrays are transferred between the CPU and

the GPU automatically.

>
>

—9
3 ‘C-(

o]
<o
/40

o

O

o

O

O

Terminology

The main CUDA programming terms are listed below:

host: the CPU
device: the GPU
host memory: the system main memory

device memory: onboard memory on a GPU card

YV V V V V

kernels: a GPU function launched by the host and executed on

the device

» device function: a GPU function executed on the device which
can only be called from the device (i.e. from a kernel or another

device function)

Setting up python numba

» You can install the NVIDIA bindings with:

S conda install nvidia::cuda-python

» Or if you are using pip:
S pip install cuda-python

» Easy to work in Google Colab

» Additional info:

https://numba.readthedocs.io/en/stable/cuda/overview.html

A kernel function is a GPU function that is meant to be called
from CPU code.

» Kkernels cannot explicitly return a value; all result data must be

written to an array passed to the function

» kernels explicitly declare their thread hierarchy when called
» the number of thread blocks

» the number of threads per block

» While a kernel is compiled once, it can be called multiple times

with different block sizes or grid sizes

*> Declaration/Invocation of the kernel

@cuda.jit
def increment by one(an array):

Increment all array elements by one.

code elided here; reod further for different implementations

32

threadsperblock =
blockspergrid = (an_array.size + (threadsperblock - 1)) // threadsperblock
[

increment by one[blockspergrid, threadsperblock](an array)

P A-C:.
<6
—0

Blocks of threads

The block size — the number of threads per block - is

often crucial:

» Software side: the block size determines how many

threads access a given area of shared memory.

» Hardware side: the block size must be large enough

for full occupation of execution units; (recommendations

can be found in the CUDA C Programming Guide)

“ Positioning of threads and blocks

@cuda.jit
def increment by one(an array):
Thread id in a 1D block
tx = cuda.threadldx.x
Block id in a 1D grid
ty = cuda.blocklIdx.x
Block width, i.e. number of threads per block
bw = cuda.blockDim.x
Compute flattened index inside the array
pos = tx + ty * bw
if pos < an_array.size: # Check array boundaries

an_array[pos] += 1

-5
20-Co
O]
o
0

0

-~ Positioning of threads and blocks

» Inside block/grid
» numba.cuda.threadldx
» numba.cuda.blockldx
» Dimensions
» numba.cuda.blockDim

» numba.cuda.gridDim

» Absolute positions

» numba.cuda.grid(ndim)

» numba.cuda.gridsize(ndim)

Data transfer

» Allocate device array

» numba.cuda.device_array(...)

» numba.cuda.device_array_like(...)

» Copy the data from host to device

» numba.cuda.to_device(...)

» Copy the data from device to host

» numba.cuda.copy to host(...)

>
>
~ Vé e
fh o
<6
-~
o
0
Lo

SO

Shared memory

]
0

-]
o

» A limited amount of shared memory can be allocated on the

device to speed up access to data.

» That memory will be shared (i.e. both readable and writable)
amongst all threads belonging to a given block and has

faster access times than regular device memory.

» It also allows threads to cooperate on a given solution. You

can think of it as a manually-managed data cache.

» The memory is allocated once for the duration of the kernel

>

©

C:
—~O
o

/40

»> Shared memory and synchronization

]
5
>
o

» numba.cuda.shared.array(shape, type)

» Allocate a shared array of the given shape and type on the device.

> The function must be called from the device

» numba.cuda.syncthreads()

» Synchronize all threads in the same thread block.

» This function implements the pattern of barrier

Local memory

» Local memory is the memory area private to a thread:

numba.cuda.local.array(shape, type)

» Using local memory helps to allocate some scratchpad

area when scalar local variables are not enough.

» The memory is allocated once for the duration of the

kernel

Constant memory

» Constant memory is an area of memory that is read

only, cached and off-chip:
numba.cuda.const.array_like(arr)
» Accessible by all threads

> Allocated from the host

e
15 ()

- References

» Fundamental tutorial on numba:

https://numba.readthedocs.io/en/stable/cuda/index.html

» Selected pages:

https://numba.readthedocs.io/en/stable/cuda/kernels.html

https://numba.readthedocs.io/en/stable/cuda/memory.html

