Parallel pFOQramm:tng
Python Numba. Pa

Wiy
v
Wiy,

"u“
Ty - Il" 2!

[} P -
U SR v 1|u -
thy 'y . 1 4

L -
RNy, : ‘ I v | SSER
i il M‘T' Qo

i 1 iz b
Wiy,

0. WEINE
" PR | i

— e
] el - "

R E gy d
' ; :
" Mu‘.".“"”

-
hrnilL
u | l.:.‘ |
——— R -
TS e e

i
'l
- W
-
i.1)4 ¥ =,
= e
hbaoa Bl daul ~L o, 2 A
(]]

Automatic Parallelization

» Setting the parallel option @)jit(parallel = True) allows
to automatically parallelize a function or its part and

perform other optimizations

» Numba attempts to identify such operations in a user
program, and fuse adjacent ones together, to form one

or more kernels that are automatically run in parallel.

» At the moment, this feature only works on CPUs.

Supported operations

These are operations on Numba arrays which include
common arithmetic functions between numpy arrays,
between arrays and scalars, as well as numpy

ufuncs:

» Unary operations (+, -, ~)
Binary operations (+, -, *, /, %, >>, <<,)
Comparison operators (==, I=, <, >, <=, >=)

Numba ufunc (only in nopython mode)

vV V V V

User-defined DUFunc through vectorize()

Supported functions

» numpy reduction functions (sum, prod, min, max, argmin,

argmax)
» numpy math functions (mean, var, std)

» numpy array creation functions (zeros, ones, array,

linspace)
» numpy doft() function

» Reduce operator for 1D numpy arrays

—50
% ‘Cl’-

<6
—O

Explicit Parallel Loops

» Another feature of the code is the support for explicit

parallel loops (again, add “parallel=True” into @jit) .

» One can use numba’s prange() instead of range() to

specify that a loop can be parallelized.

» Warning: the loop must not have cross iteration

dependencies except for supported reductions

'“,:Example 1: A parallel loop with reduction

from numba import njit, prange

@njit(parallel=True)
def prange test(A):
s =8

—

Without "parallel=True” in the jit-decoratar
the prange statement 1s equivalent to range
for i in prange(A.shape[8]):

s += A[i]

return s

F /,O—Gf
¥ ()

““Example 2: reduction on 2D array

o
5
o

from numba import njit, prange
import numpy as np

@njit(parallel=True)

def two d array reduction prod(n):
shp = (13, 17)
resultl = 2 * np.ones(shp, np.int)
tmp = 2 * np.ones_like(resultl)

for i in prange(n):
resultl *= tmp

return resultl

>
>

(® D
)

Unsupported operations

Concurrent write operations on container types (i.e., lists,
sets and dictionaries) in a prange parallel region are not

threadsafe:

@njit(parallel=True)
def invalid():
z =[]
for 1 in prange(18008):
z.append(i)
return z

—9
O —Soc

o=
@f;,"

Scheduling of parallel task

» By default, Numba divides the iterations of a

parallel region into chunks

» Approximately equally sized chunk is given to

each configured thread

» This scheduling approach is equivalent to static
scheduling in OpenMP

—9
O—Loc
O—<5

v=< Scheduling of parallel task

» Conversely, if the work per iteration varies
significantly, static scheduling approach leads to load

Imbalances

» Numba provides a mechanism to control how many
iterations of a parallel region (i.e., the chunk size) go

Into each chunk.

» This approach is similar to OpenMP’s dynamic

scheduling option with the specified chunk size.

alZs

- Example: setting the chunk size

@njit(parallel=True)
def func2(n):
acc = 9
This version gets the previous chunksize explicitly.
old chunksize = get parallel chunksize()
set parallel chunksize(8)
for 1 in prange(n):
acc += 1
set parallel chunksize(old chunksize)
return acc

—9
e
O—<5

-+ Parallel diagnostics report

» The parallel option for @)jit can produce diagnostic

information about the automatic parallelizing of the code

» The first way to access it is by setting the environment

variable NUMBA_ PARALLEL DIAGNOSTICS.

» The second way is by calling parallel diagnostics(), both
methods give the same information and print to

STDOUT.

@njit(parallel=True)
def test(x):
n = x.shapel[@]

a = np.sin(x)
b = np.cos(a * a)
acc = 9
for i in prange(n - 2):
for § in prange(n - 1):
acc += b[i] + B[] + 1]
return acc

test(np.arange(18))

test.parallel diagnostics{level=4)

—9
D
O—<5

+=~ Overview of other performance tips

» Nopython mode: getting functions to compile under it

can be the key to good performance.

» Numba supports most of numpy.linalg in nopython

mode.

» Fastmath: it is possible to relax some numerical
rigour gaining additional performance of the fastmath

keyword argument: @njit(fastmath = True)

e
15 ()

- References

» Fundamental tutorial on numba:

https://numba.readthedocs.io/en/stable/cuda/index.html

» Selected pages:
https://numba.readthedocs.io/en/stable/user/parallel.htmi#

https://numba.readthedocs.io/en/stable/user/performance-
tips.html

