
Parallel programming

Python Numba. Part 2

/

Automatic Parallelization

 Setting the parallel option @jit(parallel = True) allows

to automatically parallelize a function or its part and

perform other optimizations

 Numba attempts to identify such operations in a user

program, and fuse adjacent ones together, to form one

or more kernels that are automatically run in parallel.

 At the moment, this feature only works on CPUs.

2 15

/

Supported operations

These are operations on Numba arrays which include

common arithmetic functions between numpy arrays,

between arrays and scalars, as well as numpy

ufuncs:

 Unary operations (+, -, ~)

 Binary operations (+, -, *, /, %, >>, <<, ….)

 Comparison operators (==, !=, <, >, <=, >=)

 Numba ufunc (only in nopython mode)

 User-defined DUFunc through vectorize()

3 15

/

Supported functions

 numpy reduction functions (sum, prod, min, max, argmin,

argmax)

 numpy math functions (mean, var, std)

 numpy array creation functions (zeros, ones, array,

linspace)

 numpy dot() function

 Reduce operator for 1D numpy arrays

4 15

/

Explicit Parallel Loops

 Another feature of the code is the support for explicit

parallel loops (again, add “parallel=True” into @jit) .

 One can use numba’s prange() instead of range() to

specify that a loop can be parallelized.

 Warning: the loop must not have cross iteration

dependencies except for supported reductions

5 15

/

Example 1: A parallel loop with reduction

6 15

/

Example 2: reduction on 2D array

7 15

/

Unsupported operations

Concurrent write operations on container types (i.e., lists,

sets and dictionaries) in a prange parallel region are not

threadsafe:

8 15

/

Scheduling of parallel task

 By default, Numba divides the iterations of a

parallel region into chunks

 Approximately equally sized chunk is given to

each configured thread

 This scheduling approach is equivalent to static

scheduling in OpenMP

9 15

/

Scheduling of parallel task

 Conversely, if the work per iteration varies

significantly, static scheduling approach leads to load

imbalances

 Numba provides a mechanism to control how many

iterations of a parallel region (i.e., the chunk size) go

into each chunk.

 This approach is similar to OpenMP’s dynamic

scheduling option with the specified chunk size.

10 15

/

Example: setting the chunk size

11 15

/

Parallel diagnostics report

 The parallel option for @jit can produce diagnostic

information about the automatic parallelizing of the code

 The first way to access it is by setting the environment

variable NUMBA_PARALLEL_DIAGNOSTICS.

 The second way is by calling parallel_diagnostics(), both

methods give the same information and print to

STDOUT.

12 15

/

Simple diagnostics example

13 15

/

Overview of other performance tips

 Nopython mode: getting functions to compile under it

can be the key to good performance.

 Numba supports most of numpy.linalg in nopython

mode.

 Fastmath: it is possible to relax some numerical

rigour gaining additional performance of the fastmath

keyword argument: @njit(fastmath = True)

14 15

/

References

 Fundamental tutorial on numba:

https://numba.readthedocs.io/en/stable/cuda/index.html

 Selected pages:

https://numba.readthedocs.io/en/stable/user/parallel.html#

https://numba.readthedocs.io/en/stable/user/performance-
tips.html

15 15

