
Parallel programming

HW4 assignment

/

Markov Decision Process (MDP)

 Discrete-time stochastic control process.

 Set of states and actions
 Finite set of states
 Finite set of actions

 At each time step, the process is in some state

 Decision maker may choose any action that is
available in state

 The process randomly moves into a new state

2 14

/

Formal definition of MDP

 Markov decision process is a 4-tuple
 is a set of states called the state space
 is a set of actions called the action space (alternatively ௦)
 𝒂 is the reward received after transitioning from state to

 𝒂 is the probability of the fact that taking the action in
state at time step will lead to state at time step
 ௧ାଵ ௧ ௧

 Stochastic environment
 There is a nonzero probability,

that action a will lead
to desired state

3 14

/

Policy definition

 Given some state the policy returns an action to
perform in this state
 Optimal policy is the policy which maximizes the long-term

reward
 Reward is based on the chance that policy leads to

desired state

 Our goal is to find that optimal policy.

/

Policy Iteration

 Policy iteration is an iterative algorithm based on
Dynamic Programing.

 Requires to store two arrays.
 Array of values V , which contains real values
 Policy array π which contains actions

 At the end of the algorithm, π will contain the solution
and V will contain the discounted sum of the rewards to
be earned.

 We are talking about policies instead of actions because
of stochastic behavior of the environment

 Three steps of policy iteration
1. Initialize random policy
2. Policy Evaluation
3. Policy Improvement

5 14

/

Step 1

 Randomly initialize the policy.

 Randomly initialize actions at every state of the
system

6 14

/

Step 2

 Get an action for every state in the policy and
evaluate the value function using Bellman’s
equation:


 is transition probability from state to

state by action
 is reward of current state
 (resp.) is value of state (resp.)
 is is the discount factor satisfying

7 14

/

Step 3

 For every state, get the best action from value
function as

 is a new policy (optimal action for state s)

 If the optimal action is better than the present
policy action, then replace the current action by
the best action

8 14

/

Policy iteration algorithm

 Iterate through the steps 2 and 3, until
convergence.

 If the policy did not change throughout an
iteration, then we can consider that the
algorithm has converged.

9 14

/

Your state space

 2D maze with walls and desired state

 Goal is to find optimal policy that will lead to desired
state

 Given an agent (vehicle) with actions
 Go right
 Go left
 Go Up
 Go Down

 Each action has 80% success rate
 At 80% vehicle will go to desired direction
 At 10% vehicle will move to +90o direction
 At 10% vehicle will move to -90o direction

 Only accessible states are other fields of maze, walls
are inaccessible

10 14

/

Your task

 Find optimal policy for given maze

 Use CUDA GPU with Numba library

 Use provided maze generator to get larger
instances

 Evaluation
 Jupyter notebook with python scripts and analysis
 Graph 1: Speedup of parallel GPU version (scalability graph)
 Graph 2: Showing the algorithm runtime based on the size of an

input (performance graph)
 Explain what was the most complicated part and why the results

are as provided.
 What is the limiting factor of the parallelization in your algorithm

11 14

/

Inputs and outputs

 Input is .txt file where
 In first line there are 2 integers w and h representing width and

height
 On the rest h lines there are exactly w integers of values {0,1,2},

where
 0 represents accesible state (field)
 1 represents unaccesible state (wall)
 2 represents desired state

 Output is .txt file with h lines of w integers where
 Each value representing optimal policy at given state

 5 is policy for unaccessible states (walls) or final states
 0 is „Go Up“
 1 is „Go Right
 2 is „Go Down“
 3 is „Go Left“

12 14

/

Input Example

13 14

/

Output Example

14 14

