
Parallel programming

HW3 assignment

/

Scheduling problems recap

 We try to find an assignment of tasks to resources,

which is usually the time.

 A task can be characterized by several

parameters, e.g., release time, deadline/due date,

processing time, etc.

 We look for feasible or optimal schedule

 Feasible schedule does not violate any condition of the problem

 Optimal schedule is the best around all the feasible schedules

according to some criteria

1 10

/

Problem formulation

 Given a set of tasks T = {T1, . . . , Tn}, where each task

Ti T is characterized by its release time ri , deadline

di and processing time pi

 We want to find a feasible schedule (start times of the

individual tasks, tasks cannot overlap) such that the

completion time of the last task (Cmax) is minimal

 The problem is NP-hard, which can be shown by a

polynomial reduction from 3-partition problem.

2 10

/

Bratley’s algorithm

 Based on the branch-and-bound procedure.

 It can be seen, that a complete permutation tree has n! leaves.

 We can try to derive some pruning rules using

the objective function or the tasks constraints.

 In each node of the tree, we can compute a lower bound LB

(based on the current partial solution)

 Compare LB to global upper bound UB (which is obtained from

some feasible solution/approximation algorithm/estimation).

3 10

/

Rule 1. Some deadline is missed

 Some unassigned task may already miss its

deadline, so it makes no sense to continue,

because in the future this task will certainly miss its

deadline.

 (Tj V : max{c, rj} + pj > dj) prune this node.

 c – length of the current (partial) schedule

 V – a set of non-scheduled tasks

4 10

/

Rule 2. Violated upper bound

 If we already know some feasible schedule, we can

its length as the upper bound (UB) for the optimal

value, i.e. we can calculate the lower bound (LB) of

the current solution and prune the node if LB ≥ UB.



 c – length of the partial schedule

 V – a set of non-scheduled tasks

/

Rule 3. Decomposition

 We might be able to detect, that the partial

solution we have in the current node is optimal,

therefore it is not necessary to backtrack.

 do not backtrack

 c – length of the current (partial) schedule

 V – a set of non-scheduled tasks

6 10

/

An example with four tasks

/

HW3 assignment

 Your task is to implement in MPI the described branch-and-bound algorithm

including all the three pruning rules

 Hint: Create a communication protocol and use assynchronous

communication. Be careful with tags and requests.

 Flags for g++ (used by UploadSystem)

 -Ofast -std=c++17 -march=native

 The link for the video (CZ) and the document (EN) from Combinatorial

Optimization course with the description of Bratley‘s algorithm:

 https://www.youtube.com/watch?v=kbQ0J6I72Ww

 https://cw.fel.cvut.cz/b202/_media/courses/ko/12_bratley.pdf

8 10

/

Input and output format
 Your program will be called with two arguments

 The first one is the absolute path to input file

 The second one is the absolute path to output file (the file itself must be created by your

program)

 Let n be the number of tasks. Then the input file has n + 1 lines and

has the following form:

 If the input instance is infeasible, then the output file consists of the

single line containing −1. On the other hand, if the input instance is

feasible, then the output file consists of n lines and has the following

form (see next slide)

9 10

/

Examples of input and output

10 10

