

OSW Semestral work CP1
Public transport use in the capital and its effect on park+ride
occupancy and traffic events

Tadeáš Binder

Motivation 2
Possible questions 2

Data sources 3
Public transport coupon sales 3
Park+ride occupancy data 4
Parking locations 5
List of traffic events 5

Data integration 6
Pipeline instructions 6
Public transport coupon sales 7

Schema 8
Park+ride occupancy data 8

Schema 9
Parking locations 9

Schema 9
List of traffic events 10

Schema 10

1

Motivation
It is in any city’s best interest to decrease congestion and road accidents as much as possible.
One way to do so is to create parking facilities near major public transport centers on the edge
of the city (commonly referred to as “park+ride”) - so that travelers can conveniently park and
use public transport, thereby easing on traffic and pollution in the centre.

Studying data concerning park+ride occupancy, traffic events near the park+rides and the
usage of public transport can reveal just how significant the link between the three is. This can
be useful for the city’s public transport and road network authorities, since they can determine
whether building park+rides is worth it at all, whether they add choke points/traffic accidents to
the roads in the city, or if there are other locations where they ought to be built.

Possible questions
● Are P+Rs effective at reducing traffic in the centre?
● Are there any measurable impacts of P+Rs on public transport pass sales?
● Are there any traffic hot-spots where building new P+Rs would be beneficial?
● Are there any P+Rs which are in need of expansion, reduction or outright removal?
● Does the existence of P+Rs exacerbate traffic/accidents at roads near the P+Rs?

2

Data sources
We are going to use the following 4 data sources for this project:

Public transport coupon sales
Provider: Dopravní podnik hl. m. Prahy
Source: ​http://opendata.praha.eu/dataset/dpp-statistiky-prodanych-kuponu
Datatype: CSV

DPP offer other ways of tracking usage of its services, but this one is the most granular out of
them all, as the data is updated each day. Some “stitching” will be required, as the data is
separated into different files by type of sale (e-shop, card or paper) and by month. Park+ride
users are very likely to commute, and as such use coupons rather than tickets.

3

http://opendata.praha.eu/dataset/dpp-statistiky-prodanych-kuponu

Park+ride occupancy data
Provider: Operátor ICT, a.s.
Source: ​http://opendata.praha.eu/dataset/parkovani_pr
Datatype: CSV

Provides information about the usage of park+rides every few minutes (how many spots are
full/available at each location). Such detail is unnecessary for our purposes; therefore the data
will be condensed.

4

http://opendata.praha.eu/dataset/parkovani_pr

Parking locations
Provider: Technická správa komunikací
Source: ​http://opendata.praha.eu/dataset/parkoviste
Datatype: CSV

This is a short file that connects parking facilities operated by the TSK authority with their
geographical locations. We will use the locations of just the park+rides.

List of traffic events
Provider: Ředitelství silnic a dálnic
Source: ​http://kbss.felk.cvut.cz/dopravni-info.zip
Datatype: XML

Details all traffic events for the entire Czech Republic, including type, location, and date. Only
accidents and traffic jams in and around Prague will be of our interest, so we will focus solely on
those.

5

http://opendata.praha.eu/dataset/parkoviste
http://kbss.felk.cvut.cz/dopravni-info.zip

Data integration
All of the pipeline is coded in Python. I could have used GraphDB’s OntoRefine tool for some
data sources, but ultimately decided not to since I am quite familiar with working with RDF
graphs in code already and can therefore control the output in ways that are important for this
project.

I have used the RDFlib Python package for this project . This package implements RDF graphs 1

with lots of features, the most important of which is adding data into a graph and then serializing
it into Turtle format. This bypasses the necessity to make custom serialization algorithms. The
description of the scripts themselves are described in comments within the code.

Pipeline instructions
To start, you must have Python installed. (The code has been developed on version 3.6.5; I can
confirm that it won’t work on version 2.7.4.) To install RDFlib, run “pip install rdflib”.

The scripts require that the files are present in the same place as the scripts themselves. To be
more specific:

● Public transport coupon sales should be in a subfolder called “dpp”. Make sure to
download all files from the source.

● P+R occupancy data and Parking locations should be in the same folder as the scripts.
● Traffic events data should be in a subfolder called “dopravni-info”.

If you did everything correctly, your working folder should look like this:

1 https://rdflib.readthedocs.io/en/stable/index.html

6

Here’s what the /dpp/ and /dopravni-info/ folders should look like, respectively:

To run the scripts, simply run “python ​script​.py”, where ​script ​is the filename of the script. The
scripts can take a while to complete (as the files, especially the occupancy data, are very large),
but should not take more than 10-15 minutes on an ordinary PC (with an SSD and a i7-4790k
CPU, the process is about five minutes long and does not take more than 100MB of system
memory). The code is single threaded, so it should not lock up a modern PC.

After running, the code generates TTL files in the same folder, so make sure that file
permissions are in order.

Public transport coupon sales
● Script: oswdpp.py
● Output: dpp.ttl

The sales data is separated by year/month and by the type of sale (of electronic coupon, paper
coupon or eshop coupon). The eshop data understandably does not record the place of sale.
Therefore, before the data can even be converted, the files have to be connected together.
Afterwards, the data has to be trimmed down, as a file containing all the details of the original
would be too large (over 20MB). To do so, the type of coupon (for example Student or Citizen)
as well as the validity of the coupon (such as a year or six months) is omitted during the
conversion.

7

Schema: PassSalesRecord
Subject IRI: http://bindetad.com/dppsales/%year%/%month%/%boughtAt%, where
%boughtAt%, %year%, %month% is the same as boughtAt, year and month in the schema
respectively.

Property Datatype Description

boughtAt String At which location the pass
was bought. Contains
“Eshop” if the pass was
bought online.

count Integer How many passes were
bought during the month.

month Integer The month of the record.

year Integer The year of the record.

passType String The type of the pass bought;
can be either Paper or
Electronic.

Park+ride occupancy data
● Script: oswtsk.py
● Output: tsk.ttl

As the file contains detailed records of changes of occupancy about every 30 minutes for each
P+R, a graph containing all the data would be far too large. To mitigate this, the records are
reduced to entries of each day for every P+R, and the occupancy data is computed as an
average for each day.

8

Schema: ParkAndRideAttendanceRecord
Subject IRI: http://bindetad.com/pprattendace/%parkandride%/%date%, where %parkandride%
is the name of the P+R and %date% is the date of the record.

Property Datatype Description

capacity String How many spots does the
P+R have.

date xsd:date The day of the record.

enter Integer How many cars entered
during the day.

exit Integer How many cars left during the
day.

freespace Integer How many spaces were
available on average during
the day.

occupancy Integer How many spaces were
occupied on average during
the day.

parking String The name of the P+R.

status Float A percentage representation
of how often the P+R was
full. For example, 0.12 means
that the P+R was full
approximately 12% of the
time during the day.

Parking locations
● Script: oswpar.py
● Output: par.ttl

The pipeline for this is relatively straightforward. The CSV file contains parking lots that are not
designated as P+Rs. After these records are skipped, the file is processed normally.

9

Schema: ParkAndRide
Subject IRI: http://bindetad.com/ParkAndRide/%parkandride% where %parkandride% is the
name of the P+R.

Property Datatype Description

rdfs:label String Name of the P+R.

capacity Integer The capacity of the P+R.

geo:lat String WGS84 latitude of the P+R.

geo:long String WGS84 longitude of the P+R.

List of traffic events
● Script: oswrsd.py
● Output: rsd.ttl

This is the only dataset that is in XML and has a proprietary standard as defined by Národní
dopravní informační centrum under the Jednotný systém dopravních informací initiative.
Fortunately, the standard is clearly described in a document available online , so parsing the 2

data is only a matter of understanding the aforementioned document. Any events that are not
under region code 19 or 27 (Prague or Středočeský kraj) are ignored.

Schema: TrafficEvent
Subject IRI: http://bindetad.com/trafficevents/%id%, where %id% is the ID of the traffic event (as
described by <MSG id=... attribute).

Property Datatype Description Element in
XML

description String Description of the event. MTXT

eventCode Integer Event code(s) as described by
the ALERT-C standard. 3

EVI

geo:lat String WGS84 latitude of the event. COORD

geo:long String WGS84 longitude of the event. COORD

2 http://portal.dopravniinfo.cz/public/files/userfiles/Rozhrani_DDR_v3.2.6.pdf
3 https://wiki.openstreetmap.org/wiki/TMC/Event_Code_List

10

regionCode Integer Code of the region where the
event occured.

DEST

eventDescription String Description of the event code(s)
as described by the ALERT-C
standard.

TXTMCE

timeIssued xsd:datetime Datetime of the issue of the
event.

TGEN

timeFrom xsd:datetime Datetime of the event start. TSTA

timeTo xsd:datetime Datetime of the event end. TSTO

11

