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∙ Sends these literals to the core
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Combining theories

Instead of solving satisfiability of a formula ϕ in a theory T , we
can also try to solve the same problem for a theory that is created
as a union of more theories T1 ∪ · · · ∪ Tn, where we already have
solvers for all individual Ti, for 1 ≤ i ≤ n. For example, we can
combine TLRA and TUF .

We could develop a special solver for the new theory T1 ∪ · · · ∪ Tn,
or attempt to combine individual solvers together in a uniform way
by

▶ separating reasoning for individual theories (purification),

▶ exchanging entailed equalities between solvers (equality
propagation).

If individual theories remain satisfiable after exchanging all entailed
equalitites between solvers (propagation), then the combination is
also satisfiable, otherwise it is unsatisfiable.
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motivating example (convex case)

Consider the following set of literals over TLRA ∪ TUF
(TLRA, linear real arithmetic):

f(f(x)− f(y)) = a
f(0) > a+ 2
x = y

First step: purify literals so that each belongs to a single
theory
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motivating example (convex case)

Consider the following set of literals over TLRA ∪ TUF
(TLRA, linear real arithmetic):

f(f(x)− f(y)) = a
f(0) > a+ 2
x = y

First step: purify literals so that each belongs to a single
theory

f(f(x)− f(y)) = a =⇒ f(e1) = a =⇒ f(e1) = a
e1 = f(x)− f(y) e1 = e2 − e3

e2 = f(x)
e3 = f(y)
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motivating example (convex case)

Consider the following set of literals over TLRA ∪ TUF
(TLRA, linear real arithmetic):

f(f(x)− f(y)) = a
f(0) > a+ 2
x = y

First step: purify literals so that each belongs to a single
theory

f(0) > a+ 2 =⇒ f(e4) > a+ 2 =⇒ f(e4) = e5
e4 = 0 e4 = 0

e5 > a+ 2

76
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motivating example (convex case)

Second step: exchange entailed interface equalities, equalities
over shared constants e1, e2, e3, e4, e5,a

L1 L2
f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0
f(y) = e3 e5 > a+ 2
f(e4) = e5

e2 e3

x = y

a e5
e1 e4

L1 UF e2 e3 L2 LRA e1 e4
L1 UF a e5 Third step: check for

satisfiability locally

L1 UF
L2 LRA

Report unsatisfiable
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f(e4) = e5 e2 = e3

x = y

a e5

e1 = e4

L1 UF e2 e3 L2 LRA e1 e4

L1 |=UF a = e5

Third step: check for
satisfiability locally
L1 UF

L2 LRA
Report unsatisfiable
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motivating example (convex case)

Second step: exchange entailed interface equalities, equalities
over shared constants e1, e2, e3, e4, e5,a

L1 L2
f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0
f(y) = e3 e5 > a+ 2
f(e4) = e5 e2 = e3

x = y a = e5
e1 = e4

L1 UF e2 e3 L2 LRA e1 e4
L1 UF a e5

Third step: check for
satisfiability locally
L1 ̸|=UF ⊥

L2 |=LRA ⊥

Report unsatisfiable

77
3 / 30



motivating example (convex case)

Second step: exchange entailed interface equalities, equalities
over shared constants e1, e2, e3, e4, e5,a

L1 L2
f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0
f(y) = e3 e5 > a+ 2
f(e4) = e5 e2 = e3

x = y a = e5
e1 = e4

L1 UF e2 e3 L2 LRA e1 e4
L1 UF a e5

Third step: check for
satisfiability locally
L1 ̸|=UF ⊥

L2 |=LRA ⊥
Report unsatisfiable
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Nelson–Oppen approach
A theory T is stably infinite, if every T -satisfiable ground formula
is T -satisfied by an infinite T -interpretation. For example, finite
structures like (QF_BV) are not stably infinite.

A theory T is convex, if T is a finite set of literals and if
Γ |=T ϕ1 ∨ · · · ∨ ϕn, then Γ |=T ϕi for some i ∈ {1, . . . , n}. For
example, (QF_UF) and (QF_LRA) are convex, but (QF_LIA),
(QF_AX), and (QF_BV) are not convex.

It is possible to combine theories (Nelson–Oppen method) that are
▶ signature-disjoint (equalities are shared),
▶ stably infinite, and
▶ convex.

It is even possible to combine non-convex theories by propagating
disjunctions of equalities (splitting). From practical point of view,
many optimizations are required. There are also other methods,
e.g., model-based theory combinations.
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motivating example (non-convex case)

Consider the following unsatisfiable set of literals over
TLIA ∪ TUF (TLIA, linear integer arithmetic):

1 ≤ x ≤ 2
f(1) = a
f(2) = f(1) + 3
a = b+ 2

First step: purify literals so that each belongs to a single
theory
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motivating example (non-convex case)

Consider the following unsatisfiable set of literals over
TLIA ∪ TUF (TLIA, linear integer arithmetic):

1 ≤ x ≤ 2
f(1) = a
f(2) = f(1) + 3
a = b+ 2

First step: purify literals so that each belongs to a single
theory

f(1) = a =⇒ f(e1) = a
e1 = 1
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motivating example (non-convex case)

Consider the following unsatisfiable set of literals over
TLIA ∪ TUF (TLIA, linear integer arithmetic):

1 ≤ x ≤ 2
f(1) = a
f(2) = f(1) + 3
a = b+ 2

First step: purify literals so that each belongs to a single
theory

f(2) = f(1) + 3 =⇒ e2 = 2
f(e2) = e3
f(e1) = e4
e3 = e4 + 3

78
5 / 30



motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2

x e1

e3 = e4 + 3
a = e4

x e1
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motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2

x e1

e3 = e4 + 3
a = e4

x e1

No more entailed equalities, but L1 |=LIA x = e1 ∨ x = e2
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motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2

x e1

e3 = e4 + 3
a = e4

x e1

Consider each case of x = e1 ∨ x = e2 separately
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motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2

x e1

e3 = e4 + 3
a = e4

x e1

Case 1) x = e1
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motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2 x = e1
e3 = e4 + 3
a = e4
x = e1
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motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2 x = e1
e3 = e4 + 3
a = e4
x = e1

L2 |=UF a = b, which entails ⊥ when sent to L1
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motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2

x e2

e3 = e4 + 3
a = e4

x e2
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motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2

x e2

e3 = e4 + 3
a = e4

x e2

Case 2) x = e2

80
5 / 30



motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2 x = e2
e3 = e4 + 3
a = e4
x = e2
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motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2 x = e2
e3 = e4 + 3
a = e4
x = e2

L2 |=UF e3 = b, which entails ⊥ when sent to L1

80
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Why is SMT useful?

▶ it combines (not only) propositional logic reasoning with a
domain-specific reasoning in a modular way,

▶ it covers commonly used theories and their combinations, for
example, in software verification, we reason about
▶ equalities,
▶ arithmetic,
▶ data structures,

▶ many applications in
▶ scheduling,
▶ test generation,
▶ symbolic software verification,
▶ static analysis,
▶ program verificaiton,
▶ hardware verification,

▶ used by major companies like Microsoft (develops Z3),
Amazon, . . .
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Quantifiers?

It is convenient to use ∀ and ∃ and modern SMT solvers can deal
with quantifiers.

For some theories, it is even possible to eliminate quantifiers.

However, in SMT, it usually means that instances are produced in
an ad hoc way. . .

Here, we continue with a systematic approach how to treat
quantifiers. Hence we want to discuss provability in the full FOL.
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Example (group theory)

Assume we have axioms

∀X(1 ·X = X)

∀X(X−1 ·X = 1)

∀X∀Y ∀Z((X · Y ) · Z = X · (Y · Z))

and we want to know whether

1. ∀X(X · 1 = X),

2. ∀X(X ·X−1 = 1), and

3. ∀X∀Y (X · Y = Y ·X)

follow from them. These are tasks in which automated theorem
provers usually outperform people.
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Two types of occurrences of variables

There is no difference between

∀Xp(X) and ∀Y p(Y )

when it comes to their meaning. Hence they can be freely replaced
in formuale.

However, there is clearly a difference between

p(X) and p(Y ),

because if we replace p(X) by p(Y ) in

p(X) ∨ ¬p(Y ),

then we get
p(Y ) ∨ ¬p(Y ).

9 / 30



Free and bounded occurrences of variables
We distinguish two types of occurrences of variables in a formula ϕ
▶ free — not under a scope of a quantifier, denoted FV (ϕ),
▶ bounded — under a scope of a quantifier, denoted BV (ϕ).

FV (ϕ) =



























{X | X occurs in ϕ }, if ϕ is atomic,

FV (ψ), if ϕ = ¬ψ,

FV (ψ) ∪ FV (χ), if ϕ = ψ ◦ χ for ◦ ∈ {∧,∨,→},

FV (ψ) \ {X}, if ϕ = QXψ for Q ∈ {∀,∃}.

BV (ϕ) =



























∅, if ϕ is atomic,

BV (ψ), if ϕ = ¬ψ,

BV (ψ) ∪ BV (χ), if ϕ = ψ ◦ χ for ◦ ∈ {∧,∨,→},

BV (ψ) ∪ {X}, if ϕ = QXψ for Q ∈ {∀,∃}.

It is possible that FV (ϕ) ∩ BV (ϕ) 6= ∅.
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Tarski’s definition of truth
Let M = (D, i) be a model for L, e be an evaluation in M, then
we say that a formula ϕ is satisfied in M by e, denoted M |= ϕ[e],
or e satisfies ϕ in M, if

▶ M |= p(t1, . . . , tn)[e] iff (tM
1

[e], . . . , tMn [e]) ∈ i(p), where p is
n-ary predicate symbol in L,

▶ M |= (t1 = t2)[e] iff (tM
1

[e], tM
2

[e]) ∈ idD, (in FOL with eq.)

▶ M |= (¬ψ)[e] iff M 6|= ψ[e],

▶ M |= (ψ → χ)[e] iff M 6|= ψ[e] or M |= χ[e],

▶ M |= (ψ ∧ χ)[e] iff M |= ψ[e] and M |= χ[e],

▶ M |= (ψ ∨ χ)[e] iff M |= ψ[e] or M |= χ[e],

▶ M |= (∀Xψ)[e] iff for every a ∈ D holds M |= ψ[e(X 7→ a)],

▶ M |= (∃Xψ)[e] iff exists a ∈ D s.t. M |= ψ[e(X 7→ a)].

A formula ϕ is satisfiable, if there is M and e s.t. M |= ϕ[e]. A
set of formulae Γ is satisfiable, if there is M and e s.t. M |= ϕ[e],
for every ϕ ∈ Γ.
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Semantic consequence relation

A formula ϕ is valid (or holds) in M, denoted M |= ϕ, if ϕ is
satisfied in M by any evaluation e.

A formula ϕ follows from (or is a consequence of) a set of formula
Γ, denoted Γ |= ϕ, if and only if for any model M and evaluation
e, if for every ψ ∈ Γ holds M |= ψ[e], then M |= ϕ[e]. We write
|= ϕ, if Γ = ∅ and say that ϕ is valid (or holds).

Γ |= ϕ iff ∀M∀e(∀ψ ∈ Γ(M |= ψ[e]) ⇒ M |= ϕ[e])

Note that

Γ |= ϕ iff Γ ∪ {¬ϕ} is unsatisfiable.

We say that two formulae ϕ and ψ are (semantically) equivalent,
denoted ϕ ≡ ψ, if {ϕ} |= ψ and {ψ} |= ϕ.
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Basic properties

Let ϕ, ψ, and χ be formulae such that X /∈ FV (ψ), then

▶ ¬∀Xϕ ≡ ∃X¬ϕ,

▶ ¬∃Xϕ ≡ ∀X¬ϕ,

▶ ∀X∀Y ϕ ≡ ∀Y ∀Xϕ,

▶ ∃X∃Y ϕ ≡ ∃Y ∃Xϕ,

▶ ∀X(ϕ ∧ χ) ≡ ∀Xϕ ∧ ∀Xχ,

▶ ∃X(ϕ ∨ χ) ≡ ∃Xϕ ∨ ∃Xχ,

▶ ∃X(ϕ→χ) ≡ ∀Xϕ→∃Xχ,

▶ (ψ ∧ ∀Xϕ) ≡ ∀X(ψ ∧ ϕ),

▶ (ψ ∧ ∃Xϕ) ≡ ∃X(ψ ∧ ϕ),

▶ (ψ ∨ ∀Xϕ) ≡ ∀X(ψ ∨ ϕ),

▶ (ψ ∨ ∃Xϕ) ≡ ∃X(ψ ∨ ϕ),

▶ (ψ → ∀Xϕ) ≡ ∀X(ψ → ϕ),

▶ (ψ → ∃Xϕ) ≡ ∃X(ψ → ϕ),

▶ (∀Xϕ → ψ) ≡ ∃X(ϕ → ψ),

▶ (∃Xϕ → ψ) ≡ ∀X(ϕ → ψ).
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Equivalent formulae

We can freely replace (sub)formulae by equivalent formulae. More
formally

Lemma
Let ψ be a subformula of a formual ϕ, and χ be a formula such
that ψ ≡ χ. A formula ϕ′ is obtained by replacing ψ in ϕ by χ. It
holds that ϕ ≡ ϕ′.

Example

For example, this is useful for renaming bounded variables. Clearly
∀Xr(X,Y ) ≡ ∀Zr(Z, Y ) and hence ∀X(p(X) ∧ ∀Xr(X,Y )) is
equivalent to ∀X(p(X) ∧ ∀Zr(Z, Y )).

Note that ∀Xr(X,Y ) is not equivalent to ∀Y r(Y, Y )!
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How to decide whether Γ |= ϕ for FOL using computers?

First, we know that this problem is undecidable. . .

However, we can still use our favorite recipe

1. show that it is sufficient to deal only with a restricted class of
formulae by presenting various transformations and

(=clauses)

2. use techniques developed for less expressive systems
(=resolution)

to create a procedure that is quite useful.

Note that this is not the only possible approach! Moreover, the
other approaches may have various advantages. Similarly, using
only CNFs in propositional logic may lead to various problems.
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Prenexing

We say that a formula ϕ is in prenex (normal) form, if

ϕ = Q1X1, . . . , QnXnψ,

where Q1, . . . , Qn are quantifiers and ψ is an open (quantifier-free)
formula.

Lemma
For every formula ϕ, there exists a formula ψ in prenex (normal)
form such that ϕ ≡ ψ.

Proof.
By induction on the structure of the formula ϕ using previous
equivalences and renaming of bounded variables.
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Substitutions

A substitution, σ : Var → Term, is a function that assigns terms
to variables. An application of a substitution σ on a formula ϕ,
denoted ϕσ, is a formula ϕ with all free occurrences of variables
replaced simultaneously by their σ images. We usually denote
substitutions σ, θ, and η.

Note that we usually provide only the non-identity part of a
substitution. A substitution σ : Var → Var is called a renaming.

Example

Let σ = {X 7→ f(X,Z), Y 7→ a}, then

((p(X,Y ) → q(Y )) ∨ (∀V r(V,X)))σ

is
((p(f(X,Z), a) → q(a)) ∨ (∀V r(V, f(X,Z)))).
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Substitutability

A term t is substitutable into a formula ϕ for a variable X, if no
occurrence of a variable in t becomes bounded in ϕ when all free
occurrences of X in ϕ are replaced by t.

This directly extends to substitutions. From now on, we assume
that if we apply a substitution, it is substitutable. However, we can
always avoid all these potential problems by renaming bounded
variables appropriately.

Example

Let σ = {X 7→ f(X,Y ), Y 7→ g(X), Z 7→ g(X)}, then

▶ (∀Zp(X,Y, Z))σ = ∀Zp(f(X,Y ), g(X), Z), and

▶ (∀Y p(X,Y, Z))σ is not substitutable, but

▶ (∀Up(X,U,Z))σ = ∀U(f(X,Y ), U, g(X)).

18 / 30



Sentences

A term is ground (or closed), if it contains no variables. A formula
ϕ is a sentence (or closed), if it contains no free occurrences of
variables. A formula ϕ is open, if it contains no quantifiers.

Lemma
Let ϕ be a sentence, σ be a substitution, M be an interpretation,
and e be an evaluation, then

1. ϕσ = ϕ,

2. M |= ϕ[e] iff M |= ϕ[e′] for every evaluation e′,

3. M |= ϕ or M |= ¬ϕ.

Example

p(a) and ∀X∀Y (p(X, b, g(Y,X)) → q(f(f(b)), X)) are sentences.
∀Y (p(X, b, g(Y,X)) → q(f(f(b)), X)) is not a sentence.
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Skolem functions

It is possible to get rid of existential quantifiers by introducing
Skolem functions (or Skolem constants) that behave as witnesses
(or choice functions).

We know that
∃X∀Y ∃Zp(X,Y, Z) (1)

follows from
∀Y p(c, Y, f(Y )) (2)

where c and f/1 are fresh. Although (2) does not follow from (1),
they are equisatisfiable.
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Skolemization

We say that a formula is in Skolem normal form if it is in prenex
normal form and it contains no existential quantifiers.

We can obtain a formula in Skolem normal form from a formula ϕ
in prenex normal form by eliminating the first existential quantifier
in

ϕ = ∀X1 . . .∀Xn∃Y ψ.

We obtain

ϕ′ = ∀X1 . . .∀Xnψ{Y 7→ f(X1, . . . , Xn)}

where f is a fresh n-ary function symbol. Then we repeat the
whole process with ϕ′ until there is no existential quantifier in the
formula. The resulting formula is equisatisfiable with ϕ.

We prefer Skolem functions with smaller arities.
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Usual transformations

NNF (negation normal form)

Apply the following rewriting steps as long as possible:

¬¬ϕ ⇝ ϕ

ϕ → ψ ⇝ ¬ϕ ∨ ψ

¬(ϕ ∧ ψ) ⇝ ¬ϕ ∨ ¬ψ

¬(ϕ ∨ ψ) ⇝ ¬ϕ ∧ ¬ψ

¬(∀Xϕ) ⇝ ∃X¬ϕ

¬(∃Xϕ) ⇝ ∀X¬ϕ

Rectified formulae
A formula ϕ is rectified if

▶ no variable occurs both free and bounded in ϕ,

▶ no two quantifiers in ϕ quantify over the same variable.

We obtain a rectified formula by renaming bounded variables.
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Clauses in FOL

We adapt our terminology from propositional logic.

A literal is an atomic formula (positive), or a negation of an
atomic formula (negative).

A clause is a disjunction of finitely many literals. An important
special case is the empty clause, denoted 2.

A formula ϕ is in conjunctive normal form (CNF) if ϕ is a
conjunction of clauses.

Recall two special cases:

▶ the empty clause 2 (empty disjunction) is unsatisfiable,

▶ the empty conjunction is satisfiable.
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CNF

The universal closure of a formula ϕ, denoted ∀ϕ, is a formula
∀X1 . . .∀Xnϕ, where {X1,. . . ,Xn} = FV (ϕ).

We produce a CNF cnf(ϕ) (implicitly universally quantified) from
a sentence ϕ by performing the following steps

1. produce a NNF,

2. rectify,

3. skolemize (an obvious generalization for sentences not in
prenex normal form),

4. remove all universal quantifiers,

5. produce a CNF as in propositional logic.

Let cnf(ϕ) = χ1 ∧ · · · ∧ χm, where χi are clauses. It holds that

ϕ is satisf. iff ∀ cnf(ϕ) is satisf. iff ∀χ1 ∧ · · · ∧ ∀χm is satisf.
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Our problem
Let Γ = {ψ1, . . . , ψn} be a set of senteces and ϕ be a sentence.
We know that

Γ |= ϕ

iff

{ψ1, . . . , ψn} ∪ {¬ϕ} is unsatisfiable

iff

∀
∧

cnf(ψ1 ∧ · · · ∧ ψn ∧ ¬ϕ) is unsatisfiable,

iff

∀χ1 ∧ · · · ∧ ∀χm is unsatisfiable,

where cnf(ψ1 ∧ · · · ∧ ψn ∧ ¬ϕ) = {χ1, . . . , χm}. (=a set of
clauses).

From now on, we always assume that a set of clauses is implicitly
universally quantified.
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Instances

Lemma
Let χ be a clause and σ be a substitution, then ∀χ |= χσ.

We say that χσ is an instance of χ. If an instance contains no
variable, then we call it a ground instance.

Example

From ∀X∀Y (p(X) ∨ ¬q(X,Y )), for example, follows
p(a) ∨ ¬q(a, f(Z)) and p(b) ∨ ¬q(b, f(a)) (a ground instance).
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Herbrand models
We can restrict the types of interpretations (and ground instances) that
have to be considered. Let Γ be a set of clauses.

Herbrand universe
The Herbrand universe of Γ, denoted HU (Γ), is the set of all ground
terms in the language of Γ. If Γ contains no constants, we add a fresh
constant c to the language.

Herbrand base
The Herbrand base of Γ, denoted HB(Γ), is the set of all ground atomic
formulae in the language of Γ, where only terms from HU (Γ) are allowed.

Herbrand interpretation
A Herbrand interpretation of Γ is a subset of HB(Γ).

Herbrand model
A Herbrand model M of Γ is a Herbrand interpretation of Γ s.t. M |= Γ.

Example
Γ = {¬p(X,Y ), q(f(Y ), X)}. HU (Γ) = {c, f(c), f(f(c)), . . . } and
HB(Γ) = {p(c, c), p(c, f(c)), . . . , q(f(c), c), . . . }.
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Herbrand’s theorem

Theorem
Let Γ be a set of clauses. The following conditions are equivalent:

1. Γ is unsatisfiable,

2. the set of all ground instances of Γ is unsatisfiable,

3. a finite subset of the set of all ground instances of Γ is
unsatisfiable.

Note that Γ has a model iff it has a Herbrand model. However, we should note
that clauses are quantifier-free. For example, a formula p(c) ∧ ∃X¬p(X) is
clearly satisfiable, but has no Herbrand model; the Herbrand universe contains
only c.

It is even possible to use so called Herbrand semantics, which is common in

logic programming, instead of Tarskian semantics, check, for example, The

Herbrand Manifesto.
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Naïve approach
Herbrand’s theorem provides a propositional criterion for
unsatisfiability of a set of clauses Γ, because a ground atomic
formula can be seen as a propositional atom (like in SMT).

Several early approaches (Gilmore; David and Putnam in 1960)
work as follows
▶ generate ground instances and use propositional resolution,
▶ if it is propositionally satisfiable, then produce more instances

(there is usually infinitely many of them) and repeat.

However, such an approach is generally very inefficient.

But variants of it are widely used, for example, in

▶ iProver,

▶ EPR (effectively proposional, or Bernays–Schönfinkel–Ramsey

class)—no function symbols and a quantifier prefix ∃∗∀∗ hence |D|

is bounded by the number of constants occurring in the problem;

decidable (NEXPTIME-complete).
▶ SMT,

▶ Answer Set Programming.
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Lifting lemma

A technique to prove completeness theorems for the non-ground
case using completeness for a ground instance.

For example, we want to satisfy two clauses

{q(Y, f(X)), p(X, g(a, Y ))} and {¬p(U, V ), r(U, V )}.

We want to represent infinitely many ground instances and possible
resolution steps by a single non-ground instance.

{q(Y, f(X)), p(X, g(a, Y ))} {¬p(U, V ), r(U, V )}

{q(Y, f(X)), r(X, g(a, Y ))}

Use unification!

Remark
{q(Y, f(X)), p(X, g(a, Y ))} means ∀X∀Y (q(Y, f(X)) ∨ p(X, g(a, Y )))
and {¬p(U, V ), r(U, V )} means ∀U∀V (¬p(U, V ) ∨ r(U, V ).
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Used presentation

The slides 1, 3, and 5 are taken from Tinelli 2017.
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