Logical reasoning and programming, lab session 1

(September 19, 2022)

I. 1 Decide which of the following formulae are tautologies:
(a) $((p \rightarrow q) \rightarrow q) \rightarrow q$,
(b) $((p \rightarrow q) \rightarrow p) \rightarrow p$,
(c) $(p \rightarrow q) \vee(q \rightarrow p)$,
(d) $((p \rightarrow q) \wedge q) \rightarrow p$,
(e) $\neg p \rightarrow \neg(p \vee(p \wedge q))$.

Although formulae contain only two variables, try to find a better method than truth tables if possible.
I. 2 Decide which of the following claims are true:
(a) $\neg(\varphi \leftrightarrow \psi) \models \varphi \wedge \psi$,
(b) $\neg(\varphi \leftrightarrow \psi) \models \varphi \vee \psi$,
(c) $\neg(\varphi \leftrightarrow \psi) \models \varphi \rightarrow \psi$.
I. 3 Are the following two C programs equivalent?

```
if(!a && !b) h();
else if(!a) g();
f(a) f();
else f(); else h();
```

Prove their equivalence formally, or provide a counterexample. Please, check your solution against these slides.
I. 4 If $\varphi \rightarrow \psi \in$ TAUT and $\psi \rightarrow \chi \in \operatorname{TAUT}$, then $\varphi \rightarrow \chi \in$ TAUT. Why? Does the claim still hold if we replace TAUT with SAT and why?
I. 5 Let $\operatorname{Cl}(\Gamma)=\{\varphi: \Gamma \models \varphi\}$. What is $\operatorname{Cl}(\emptyset)$ equivalent to? Let Γ and Δ be sets of formulae. Check whether:
(a) $\Gamma \subseteq \mathrm{Cl}(\Gamma)$,
(b) $\mathrm{Cl}(\mathrm{Cl}(\Gamma))=\mathrm{Cl}(\Gamma)$,
(c) $\mathrm{Cl}(\Gamma \cup \Delta)=\mathrm{Cl}(\Gamma) \cup \mathrm{Cl}(\Delta)$.

If the equality does not hold in (b) or (c), does at least one of the inclusions hold?
I. 6 Recall that a Boolean function of n-variables is a function $f:\{0,1\}^{n} \rightarrow$ $\{0,1\}$. Describe all functions of one variable. How many distinct Boolean functions of n variables exist? Try $n=0,1,2, \ldots$ first. Do you know, why are functions NAND (\uparrow) and NOR (\downarrow) interesting? ${ }^{1}$

[^0]I. 7 If we use standard rewriting rules for producing a CNF, then we usually conclude by some simplifications-remove duplicate clauses and literals. Why can we do that? Is it correct that there is no need for a variable to occur more than once in a clause?
I. 8 Produce a formula in CNF which is equivalent to
$$
\varphi=(a \rightarrow(c \wedge d)) \vee(b \rightarrow(c \wedge e)) .
$$

Then use the Tseytin transformation to produce a formula in CNF which is equisatisfiable to φ.
I. 9 Try solving SAT problems by hand in The SAT Game.

[^0]: ${ }^{1}$ These connectives are also called Sheffer stroke and Peirce arrow, respectively. They are defined as $x \uparrow y:=\neg(x \wedge y)$ and $x \downarrow y:=\neg(x \vee y)$.

