
 113

Kinetic Convex Hull Maintenance Using Nested Convex Hulls

Mohammad Reza Razzazi1, Ali Sajedi2

1Software Research and Development Laboratory, Computer Engineering Department, AmirKabir University of Technology,
Tehran, Iran

razzazi@ce.aut.ac.ir
2 Software Research and Development Laboratory, Computer Engineering Department, AmirKabir University of Technology,

Tehran, Iran

alisajedi@yahoo.com

ABSTRACT

In this paper we present an effective kinetic data structure
and algorithm for efficient maintenance of convex hull of
moving points in 2d space. Given n points continuously
moving in the plane we give an efficient algorithm for
maintaining their convex hull. Our algorithm partitions the
original points into several groups, each group’s points
forming a convex polygon and the polygons are nested.

1- INTRODUCTION

The problem of convex hull has been exhaustively studied in
computational geometry [1, 2, 3, 6], but almost in the context
of static objects with operations like insertion and deletion.
Our emphasis is on maintenance of convex hull under
continuous motions of the given objects. Our algorithm takes
advantage of concurrency and neighbourhood in motions to
achieve a minimal number of combinatorial events. From this
point of view our data structure is similar to the dynamic
computational geometry framework introduced by Atallah
[7], which studies the number of combinatorially distinct
configurations of convex hull resulting from continuous
motion of objects. Our data structure does not need to know
the full motion of the objects in the beginning.

Bash, Guibas, and Hershberger in [8] introduced a useful
technique for maintaining convex hull and closest pair of
moving points in the plane called kinetic. Kinetic solutions
are based on occurrence of events. Each event corresponds to
changes in combination of a constant number of points such
as reversing the sign of angle ABC, or crossing the point A
with line segment BC. They called these changes
‘certificates’. Events are collected and scheduled in a global
event queue. In kinetic solutions we try to minimize the
number of events to reduce process time and space.

A good kinetic algorithm is local, in other words, each point
is involved in only polylogarithmically many certificates, and
occurrence of one event does not affect so many points and
events. For more information about kinetic solutions and
parameters refer to [9].

In [4], [5] the convex hull algorithm is based on upper
envelopes of duals of points in 2d space and calculates a good
number of events. Their work is on line segments and
envelopes, but our algorithm acts directly on points and

convex hull of them, hence our algorithm uses a sensible and
direct approach.

Our algorithm only schedules events for adjacent points in
the data structure, and hence does not involves too many
events.

Each object is assumed to be a point. Thus at any time we
want to have the convex hull of n points continuously moving
in a restricted area such as a rectangle. We assume that each
point has a flight plan that defines the moving direction and
speed of that point. This direction can only change because of
a collision between the point and borders of the region. Also
we assume that points can cross each other without any
collision.

2- PRELIMINARIES

It is obvious that during the time between occurrences of two
consequent events, the points present in convex hull does not
change, in other word the convex hull is formed of the same
points (with changing places) resulting the moving convex
hull. We do not need to calculate the convex hull all the time.
We initialize the data structure at the beginning and then only
at the scheduled times apply the events, possibly changing
the status of the convex hull.

In the following, we first, present a simpler version of our
kinetic data structure and then to improve its locality some
modifications will be applied. However, the main algorithm
is the same and can use each version of the data structure.

3- KINETIC DATA STRUCTURE

Our kinetic data structure is a set of nested convex hulls
(NCHs) containing all points of the problem (maybe there
will be only one or two points in the most inner convex hull,
that represents respectively a point or a line segment. We
assume that it also represents a convex hull). The convex
hulls are kept in a simple data structure such as array of
linked lists (array of convex hulls) or linked list of linked lists
(linked list of convex hulls). What is important is the
sequence of points in each convex hull. We study each
convex hull in clockwise order and next and prior pointers
for each point of it.

It is obvious that having NCHs, the convex hull is always
available (The convex hull of all points is always the outer

 114

convex hull). By occurrence of any event we will update the
NCHs, possibly changing the place of some points in two
adjacent convex hulls or just changing the child(s) of a point,
which would be defined later.

The manner of creating NCHs from initial points is as
follows:

Algorithm createNCHs(pointsArray) // Returns NCHs

 Input: pointsArray[1..n]

 // Array of coordinates of input points

 Output: nested convex hull of (fixed) points

{

 S: NCHs;

 flag: array [1..n] of Boolean;

 for all points, i, in pointsArray do

 flag[i] false;

 while (there is any unflagged point in pointsArrsy){

 obtain the convex hull of all unflagged points of

 pointsArray, naming CH;

 add CH to S;

 set flags of all points of CH to true;

 }

 return S;

}

Figure 1- Nested Convex Hulls used in our kinetic data

structure

Figure 2- order of points in each convex hull is clockwise and

each point has two pointers to next and prior points.

Note that only once we need to create the NCHs from initial
points; the other times we change the NCHs when an event
occurs. These changes are all local and we do not have a
global event.

3-1- List of events

For each event we should work on the points of NCHs that
cooperate in that event.

For each point there are (possibly) internal and external
convex hulls. A part of NCHs is shown in Figure 3 (convex
hulls A, B, C...). Lines connecting B3 to C2 and B3 to C6
indicates the FirstChild and LastChild of B3 that will be
defined for fully localizing the algorithm.

These definitions for a point, X, as follows:

- firstChild: Consider a point, P, on immediate inner layer of
X (IL(X)) which is not visible from X. Moving clockwise
from p on IL(X), the first point visible from X is called
firstChild(X).

- lastChild: Same as firstChild, the last point visible from X
is called lastChild(X).

Figure 3- a part of NCHs named alphabetically

For example for point B3 the points as firstChild and
lastChild are shown in Figure 3 (C2 and C6).
Important events that may change the outer convex hull
include: moving a point, p, from convex hull i to convex hull
i+1 or i-1 (goOut(p) and goIn(p)).
List of possible events for a point such as B3 is as follows:
1- Reaching the border of the region and reflecting the
direction of motion. We call this event changeDir(B3)

2- Moving B3 toward the inner convex hull (C). We call this
event goIn(B3).

3- Moving B3 toward the outer convex hull (A). We call this
event goOut(B3).
4- Exiting C2 from visibility region of B3 (C3 intersects line
segment B3C2). We call this event notFirstChild(B3).

5- Entering C1 into visibility region of B3. We call this event
beFirstChild(B3).

6- Exiting C6 from visibility region of B3 (C5 intersects line
segment B3C6). We call this event notLastChild(B3).

7- Moving C7 into visibility region of B3. We call this event
beLastChild(B3).

The last four events ensures having correct firstChild and
lastChild for each point at event times.

At each scheduled event we do necessary modifications to
NCHs. These changes are all local. For example in case of
Figure 3, moving B3 toward convex hull C leaves B2 and B4
in convex hull B as neighbours (deleting B3 form convex hull
B), also inserts B3 as a point of convex hull C between C2 and
C6. This results entering C3, C4 and C5 recursively in inner
convex hulls. This (entrance to inner convex hulls

 115

recursively) continues until the node that should enter inside
has only its two Children as visible points of inner convex
hull; in this case deleting it from outer convex hull and
inserting it in the inner convex hull is enough. This operation
is called goIn. In Figures 4, 5 examples of simple goOut and
simple goIn are shown. Simple events only change the two
adjacent convex hulls, and do not change the other internal
convex hulls, whilst complex events change several nested
convex hulls recursively.
All these operations are applied at each event and NCHs are
updated accordingly.

Figure 4- Simple goOut(p) event and changes made in the

NCHs

Figure 5- Simple goIn(p) event and changes made in the

NCHs
In Table 1 we show the changes needed to do with
occurrence of each event:

Event
name

Certificate Changes after occurrence

changeDir

(B3)

Crossing B3 with
the border of the

region

A reflected direction of
B3 with respect to the
border will be applied

goIn(B3)
Crossing B3 with

line segment B2B4

B3 will be inserted in the
inner convex hull that
may result in goIn(Xi)

for some X and i
(X∈layers C, D, …)

recursively

goOut

(B3^.
firstChild)

Crossing B3
^.firstChild (e.g.
C2) with the line

segment
B3B3^.prior

B3^.firstChild (e.g. C2)
will be deleted from

inner convex hull and
will be inserted between

B3 and B3^.prior (e.g.
B2) that may result in

goOut(Xi) for some i and
X (X∈layers C, D, …)

recursively

notFirstCh
ild(B3)

Crossing the point
B3^.firstChild
^.next (e.g. C3)

with line segment
B3B3^.firstChild

(e.g. B3C2)

B3^.firstChild^.next (e.g.
C3) will become the new

B3^.firstChild

beFirstChi
ld(B3)

Crossing the point
B3^.firstChild

^.prior (e.g. C1)
with extension of

line segment
B3B3^.firstChild

(e.g. B3C2)

B3^.firstChild^.prior
(e.g. C1) will become the

new B3^.firstChild

notLastCh
ild(B3)

Crossing the point
B3^.lastChild

^.prior (e.g. C5)
with line segment
B3B3^.lastChild

(e.g. B3C6)

B3^.lastChild^.prior (e.g.
C5) will become the new

B3^.lastChild

beLastChil
d(B3)

Crossing point
B3^.lastChild

^.next (e.g. C7)
with extension of

line segment
B3B3^.lastChild

(e.g. B3C6)

B3^.lastChild^.next (e.g.
C7)will become the new

B3^.lastChild

Table 1- List of possible events
In the next section we present the algorithm working with the
data structure to maintain the convex hull.

4- KINETIC CONVEX HULL
MAINTENANCE ALGORITHM

The high-level pseudo code for this algorithm is given below.
The code simulates NCHs maintenance and animates moving
NCHs. Note that all links are implemented by pointers; each
point has a pointer to next and previous points, and pointers
to its firstChild and lastChild. With occurrence of each event
these pointers are modified according to type of event.

Algorithm Kinetic_Convex_Hull:

 Input: pointsArray[1..n]

 // Array of coordinates of input points

 simTime

 // The simulation time

 Output: moving convex hull of points

Var

 S: NCHs;

 E: linked list of Events sorted by event time;

 t, occurrenceTime: Time

{

 S createNCHs(pointsArray);

 S linkChilds(S);

 // : for all points finds firstChild and lastChild points

 // (if any)

 E scheduleAllEvents(S);

 // For almost all points there will be 7 events

 // according to definition in section 3-1.

 // Exceptions are the points on innermost convex hull

 t getTime();

 116

 simTime simTime + t;

 occurrenceTime E^.occurrenceTime;

 // E^.occurrenceTime is the time of first event

 while(occurrenceTime < simTime){

 draw S till time occurrenceTime;

 // S has the same configuration during this time

 applyFirstEvent(E, S);

 // Applies the first event of list E. Applying this

 // event may change both E and S. Because of

 // this, these two these parameters are called by

 // reference and change their values in the

 // function. The places of points of NCHs are updated

 // and their related events in E are rescheduled.

 E E^.nextEvent; // pointing E to next Event.

 occurrenceTime E ^.occurrenceTime;

 }

}

5- CONCLUSIONS

Using the framework defined in [8] we proposed an
efficient algorithm using a direct approach. Because of
the nature of convex hull, it is difficult to localize the
problem. By using nested convex hulls we showed that
each point’s motion may only change the status of
some neighboring points, and as a result were able to
eliminate many events and achieve efficiency.

6- REFERENCES

[1] 1. J. Hershberger and S. Suri. Applications of a semi-
dynamic convex hull algorithm. BIT, 32:249-267, 1992.

[2] 2. M. H. Overmars and J. van Leeuwen. Maintenance of
configurations in the plane. J. Comput. Syst. Sci.,23:166-
204, 1981.

[3] 3. F. P. Perparata and M. I. Shamos. Computational
Geom-etry: An Introduction. Springer-Verlag, New
York, NY, 1985.

[4] 4. P. K. Agarwal, O. Schwarzkopf, and M.Sharir. The
overlay of lower envelopes and its applications. Discrete
Comput. Geom., 15:1-13, 1996

[5] 5. J. Hershberger. Finding the upper envelope of n line
seg-ments in O(nlogn) time. Inform Process. Left.,
33:169-174, 1989.

[6] 6. M. de Berg, M. van Kreveld, M. Overmars, and O.
Schwarzkopf. Computational Geometry, Algorithms and
applications. Springer-Verlag, Berlin, 2000.

[7] 7. M. J. Atallah. Some dynamic computational geometry
problems. Comput. Math. Appl., 11:1171-1181, 1985.

[8] 8. J. Basch, L. J. Guibas, and J. Hershberger. Data
structures for mobile data. SoDA, 1997.

[9] 9. J. Basch L. J. Guibas, C. D. Silverstein and L. Zhang.
A Practical Evaluation of Kinetic Data Structures. 13th
Symposium on Computational Geometry, 1997.

