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ABSTRACT The kernel K(P) of a simple polygon P wah n verUces is the locus of the points internal to P from 
which all verUces of P are wslble Equwalently, K(P) is the mtersectmn of appropriate half-planes determined by 
the polygon's edges Although it is known that to find the intersection of n generic half-planes requires time 
O(n log n), we show that one can exploit the ordering of the half-planes corresponding to the sequence of the 
polygon's edges to obtain a kernel finding algorithm which runs m time O(n) and is therefore optimal 
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1. Introduction 

The  kernel K(P) of  a simple polygon P is the locus o f  the points internal  to P which can be 
jo ined  to every vertex o f  P by a segment  totally contained in P. Equivalent ly ,  i f  one  
considers the boundary  o f  P as a counterclockwise directed cycle, the kernel  o f  P is the 
intersection o f  all the half-planes lying to the left o f  the polygon 's  edges. 

Shamos and Hoey  [1] have presented an a lgor i thm for f inding the kernel  o f  an  n-edge 
polygon in t ime O(n log n). Thei r  a lgor i thm is based on the fact that the intersection o f  n 
generic  half-planes can be found in t ime O(n log n); they also show that  fl(n log n) is a 
lower bound  to the t ime for f inding the intersection o f  n half-planes.  However ,  this lower 
bound  does not  apply to the p rob lem o f  f inding the kernel, since in the latter case the half- 
planes are ordered according to the sequence of  the edges o f  P, nor  does their  a lgor i thm 
take advantage  o f  this order. In this note we shall show that, indeed, this order ing can be 
exploited to yield an a lgor i thm which runs in t ime l inear in the number  o f  the edges. 
Obviously,  since each edge must  be examined,  the t ime of  our  a lgor i thm is op t imal  wi thin  
a mult ipl icat ive constant.  

The  mode l  o f  computa t ion  used for the above results, which we shall  also adopt  in this 
paper,  is a random-access  machine  ( R A M )  w a h  rea l -number  ari thmetic,  i.e. with the 
capabil i ty o f  performing comparisons  o f  real numbers  and rat ional  operat ions  on real 
numbers .  

The  input  polygon P is represented by a sequence o f  vertices Vo, vl . . . . .  vn-l, with n _> 4, 
in which each v, has real-valued x- and y-coordinates  (x,, y,), and (v,-1, v,) (see Footno te  
1), for i = 1, 2 . . . . .  n, is the edge o f  the polygon connect ing vertices v,_~ and v,. Fo r  ease o f  
reference we shall describe P by a circular list o f  vertices and intervening edges as 
voe~v~e2 ... en-lvn-leovo, where  e, = (v,_~, v,). We also Impose a direct ion upon each edge 
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such that the interior of the polygon hes to the left oi ~ the edge, or, eqmvalently, the 
boundary of P is directed counterclockwise. A vertex v, is called reflex ff v,+~ hes to the 
right of the line containing e, and directed like e,, that is, if  the interior angle at v, is larger 
than 180°; a vertex is called convex otherwise. We also assume that the intenor angle at a 
convex vertex v, be strictly smaller than 180 °, since the elimination of straight-angle 
vemces does not change P and can be done by a preliminary scan of the boundary of P in 
time O(n). It is obvious that the kernel of P, being the intersection of half-planes, is a 
convex polygon K(P) and is bounded by at most n edges. Thus if the kernel is nonempty, 
the output will also be represented by the sequence of vemces and edges of the polygon 
K(P). 

2. The Algorithm 

The algorithm we shall outline scans in order the vertices of P and construct a sequence of 
convex polygons KI, K2 . . . . .  Kn-1. Each of these polygons may or may not be bounded. We 
shall later show (Lemma 1) that K, is the common intersection of the half-planes lying to 
the left of the &rected edges e0, e~, ... , e,. This result has the obvious consequences that 
K , - i  = K(P) and that K1 D K2 D ... _D K,; the latter implies that there is some r > 1 such 
that K, is unbounded or bounded depending upon whether t < r or i _> r, respectively. 

Notationally, if points w, and w,+~ belong to the line containing the edge % of P, then 
w, esw,+x denotes the segment between w, and w,+~ with the same direction as e , .  When a 
polygon K, is unbounded, two of its edges are half-hnes; so, Aew  denotes a half-line 
terminating at point w and directed like edge e, while weA denotes the complementary 
half-line. 

During the processing, the boundary of K is maintained as a doubly hnked hst of 
vertices and intervening edges. This list will be either linear or circular, depending upon 
whether K, is unbounded or bounded, respectively. In the first case, the first and last item 
of the list will be called the list head and list tail, respectively. 

Among the vertices of Ks we distmgmsh two vertices F, and L,, defined as follows. 
Consider the two lines of support 2 of K, through vertex v, of P. Letf~ and l, be the two half- 
lines of these hnes which contain the points of support, named so that the clockwise angle 
from f, to l, in the plane wedge containing K, is no greater than ,r (Figure l). Vertex F, is 
the point common to f, and K, which is farthest from v,; L, is slmdarly defined. These two 
vertices play a crucial role in the construction of K,+i from K,. 

If  P has no reflex vertex, then P is convex and trivially K(P) = P. Thus let vo be a reflex 
vertex of P. We can now describe the kernel algorithm. 

Inmal Step We set K~ equal to the intersection of the half-planes lying to the left of edges e0 and e~, i e K1 *- 
Ae;voeoA (Figure 2) F1 ~ point at infinity of Aelv0, L1 ~ point at Infinity of VoeoA 

2 Recall that l is a line of support of a polygon P if l has at least one point In common with P and the interior of 
P entirely lies on one side of l 
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General Step We dBtmgmsh  several cases We assume that the vertices o f  K, be numbered  consecutively as w~, 
w2, , counterclockwise 

(1) Vertex v, ts reflex (see Figures 3(a. b)) 
(1 1) F, hes on or to the right of Ae,+~v,÷l (Figure 3(a)) We scan the bounda ry  of  K, counterclockwise from F, 

until  either we reach a unique edge (w,-iw,) of  K, intersecting Ae,+]v,+~ or we reach L, without  f inding 
such an  edge In the latter case, we terminate the a lgori thm (K(P) = ~3) In the former  case. we take the 
following actions 

(0 We find the intersection w" of  (wt-~w,) and  Ae,+~v,+~ 
(u) We scan the bounda ry  o f  K, clockwise from F,. until either we reach an edge (w._~w.) 

intersecting Ae,+~v,+~ at a point  w" (this Is guaranteed  if K, is bounded)  or  (only when K, is 
unbounded)  we reach the list head  without  f inding such an  edge In the first case. letting K, 
= awe ... w,-~/3 (where a and /3  are sequences o f  a l ternat ing edges and  veruces), we set K,+~ 

aw"e,+aw'/3, m the second case (K, is unbounded)  we must test whether  K,+~ is bounded  
or u n b o u n d e d  I f  the slope o f  Ae,+jv,÷j is comprised between the slopes o f  the mttml and  
final half-hnes of K,. then K,+] ~ Ae,+~w'/~ is also unbounded  Otherwise we begin scanning 
the b o u n d a r y  o f  K, clockwise from the hst tad until an  edge (w,-~w~) ts found which  intersects 
Ae,+]v,+t at a point w", letting K, = 7Wt-}6Wrll we set K,+] ~ 6w" e,+~w' and  the list becomes 
circular 

The selection o f  F,+~ is done as follows I f  Ae,.]v,+] has  just  one intersection with K~, then F,+l <-- (point 
at infinity o f  Ae~+lv,.]). otherwise F,+l ~ w" To determine L,+i, we scan K~ counterclockwise from L~ 
untd  either a vertex w. o f  K, is found such that  w.+~ lies to the left o f  v,+~(v,+~w.)A, or the hst o f  K, is 
exhausted without  f inding such vertex In the first case L,+~ ~ w.. m the other  case (which may  happen  
only when K, Is unbounded)  L,+~ <-- L, 

(1 2) F, hes to the left ofAe,+~v,+~ (F~gure 3(b)) In this case K,+~ ~ K,, but F, and  L, must  be upda ted  To 
determine F, . l ,  we scan K, counterclockwise from F, until  we find a vertex wt of K, such that  wt+~ lies to 
the right o f  v,+~(v,+~w,)A, we then set F,+~ ~ w, The d e t e r m m a u o n  o f  L,+~ is the same as m case (I 1) 

(2) Vertex v, is convex (see Figures  4(a, b)) 
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FIG 3 Genera l  step when v, is reflex 
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FIG 4 G e n e r a l  step w h e n  v, is c o n v e x  
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(2 1) /L hes on or to the right of v,e,+lA (Figure 4(a)). We scan the boundary of K, clockwise from L, until 
either we reach a unique edge (wt-~wt) intersecting v,e,+~A or we reach F, without finding such an edge. 
In the latter case, we terminate the algormhm (K(P) = O). In the former case, we take the following 
actions" 

(0 
(ii) 

We find the intersection w' of (wHwt) and ~,e,+iA. 
We scan the boundary of K, counterclockwtsefrom L, untd either we reach an edge (w,_~w,) 
intersecting v,e,+~A at point w" (guaranteed ilK, is bounded) or (only when K, is unbounded) 
we reach the list tail without finding such an edge. Letting K, = awt-., w,_~fl, m the first case 
we let K,+i ~ aw'e,+lw"fl; m the second case (K, is unbounded) we must test whether K,+t 
is bounded or unbounded If the slope of v,e,+~A is comprised between the slopes of the 
initial and final half-hnes of K,, then K,÷i ~ aw'e,÷~A ~s also unbounded Otherwise we 
begin scanning the boundary of K, counterclockwise from the hst head until an edge (w,_~w,) 
is found which intersects v,e,+~A at a point w"; letting K, = -rw,_~6wt~ we set K,+~ 
8w'e,+iw" and the list becomes circular 

The selections of F,+j and L,+j depend upon the posnion of v,+j on the half-hne v,e,+jA and upon 
whether v,e,+iA has one or two intersections with K, We distinguish these two cases 
(2 1.1) v,e,+lA intersects K, mw '  and w". If v,+~ E [v,e,+~w'] then F,+~ is selected as m case (I 2) 

Otherwise F,+~ is set to w' If v,+l E [v,e,+~w"] then L,+~ is set to w" Otherwise L,+j is selected 
as m case (1 !) except that we scan K,+~ counterclockwise from w". 

(2.1 2) v,e,+~A intersects K, m just w'. If v,+~ ~ [v,e,+~w'], F,+l Is selected as in case (1 2), otherwise F,+~ 
w' L,+~ is set to the point at infinity of v,e,+~A 

(2 2) L, hes to the left of v,e,+~A (Figure 4(b)) In this case K,+~ ~-- K, F,+1 is determined as in (I 2) If K, is 
bounded then L,+i is determined as m case (1 1), otherwise L,+~ ~ L, 

T h e  correc tness  o f  the  a l g o r i t h m  is asser ted  by  the  fo l lowing l emma,  whe re  we let  H: 
d e n o t e  the  h a l f - p l a n e  lying to the  left o f  l ine  Ae:A. 

LEMMA 1. The polygon K,+i is the intersection o f  Ho, H1 . . . . .  H,+i f o r  i = O, 1 . . . . .  
n - 2 .  

PROOF. By induc t ion .  Not ice  t ha t  K1 is by  de f in i t ion  the  in te rsec t ion  o f  H0 a n d  H1 
( in i t ia l  s tep o f  the  a lgor i thm) .  A s s u m e  induc t ive ly  t ha t  K, = Ho N Hi f3 ... A H,. T h e n  in 
all  cases c o n t e m p l a t e d  in  the  genera l  s tep we cons t ruc t ive ly  in tersect  K, a n d  H,+~, t he reby  
es tab l i sh ing  the  claim. [ ]  

W h i l e  L e m m a  1 g u a r a n t e e s  t ha t  the  a l g o r i t h m  correct ly  cons t ruc t s  K(P), a m i n o r  bu t  
i m p o r t a n t  mod i f i ca t i on  o f  the  genera l  s tep is n e e d e d  in  o rde r  to  ach ieve  efficiency. In  fact, 
t he re  cou ld  be  po lygons  P, w i th  K(P) -- f~, for  w h i c h  Ume O(n 2) cou ld  be  used  before  
t e rmina t ion .  Th i s  c an  be  avo ided  by  a n  add i t i ona l  test  based  o n  the  fo l lowing p roper t i e s  
o f  kernels .  

LEMMA 2. Let P be a simple polygon and suppose that K(P) ~ f~. For any points p E 
K(P) and u on the boundary o f  P, the segment (pu) is contained in P. 

PROOF. Let  u be long  to edge e: = ( b - ~ b )  o f  P, a n d  cons ide r  the  t r i angle  ( P b - ~ b )  (F igure  
5). A s s u m e  the  s egmen t  (pu) is no t  c o n t a i n e d  in P, a n d  let q be  a po in t  o f  (pu)  ex te rna l  to 
P. T h e n  there  are two edges,  e~ a n d  e,, o f  the  b o u n d a r y  o f  P w h i c h  cross (pu) o n  oppos i te  
sides o f q .  S i n c e p  ~ K(P), n o  edge o f  P crosses e i the r  ( p b - l )  or  ( P b )  except  poss ibly  at  b-1  

or  b,  respect ively.  S ince  the  b o u n d a r y  o f  P is a s ingle  cycle, e~ a n d  e, be long  to a cha in  C 
o f  edges  be tween  b a n d  b-~. Bu t  Ce: is closed; h e n c e  it coincides  wi th  the  b o u n d a r y  o f  P 

V 1 

J 

FIG 5 lfp ~ K(P) no point of (pu) Is external to P 
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since P is simple; moreover, P C (pb-1%). Also, by the s imphoty  of  P, both (Pb)  and 
(Pb-a) cannot belong to Ce~; hence, at least one of them is external to P, a contradiction. []  

Now consider the two hnes of  support of  K, through vertex vo of  P (Figure 6). L e t f a n d  
I be the two half-lines of  these lines containing the points of  support, named so that the 
clockwise angle f r o m f t o  l is convex. Also let f *  be the segment between v0 and the point 
of  support farthest from Vo, and l e t f  be the complementary half-line o f f ,  1" and l are 
similarly defined. 

THEOREM 1. Suppose that K,+] is nonempty and that e,+l crosses either l* or f ,  with v,+] 
in the convex wedge delimited by f and I (crosshatched in Figure 6); then K(P) = f3. 

PROOF. Suppose that e,+l crosses l* (Figure 6(a)); then we claim that the boundary of  
P separates K,+1 from v0. Indeed, this is obvious lfe,+a crosses both f *  and l*. I f  not 0 e. v, 
is in the wedge bounded b y f a n d  l), the boundary of  P cannot cross 1" more than once; 
otherwise K,+a would lie on the right of  some edge Ae~A (s < i) and would therefore be 
empty. Suppose now K(P) # f3 and let p be a point m K(P), obviously p E K,÷, and the 
segment (pro) is entirely contained m P. But (pro) crosses the boundary of  P, whence a 
contradiction and K(P) = f3. 

Assume now that e,+~ crossesf(Figure 6(b)); then we claim that the boundary of_P cuts 
the convex wedge delimited by 7 andf .  Indeed, this is obvious if e,+~ crosses b o t h f a n d  1; 
if not 0.e. v, is inside the wedge bounded by f and l), the boundary of  P cannot cross f 
more than once, by the same argument gwen above. Suppose now K(P) # 0 ,  with p 
K(P) C K,+]; then the half-linep(pvo)A reaches the boundary of  P within the above wedge 
in a point u. But, by Lemma 2, the segment (pu) must be contained in P; however, since 
it crosses its boundary at v0, we have a contradiction and K(P) = 0 .  [] 

Therefore we shall modify the general step of the algorithm by adding the following 
additional operations (test and update): (1) Before determining K,+i, F,+~, and L,+i: I f  e,+~ 
crosses either l* or L with v,+a in the convex wedge dehmited by f a n d  l, terminate the 
algorithm with K(P) = ~5. (2) In cases (1. l) and (2.1), after determining K,+i, F,+i, and L,.i: 
Let F*, L* be points of  support o n f a n d  l, respectively. Imtially, since K] is AelvoeoA, F* 
and L* are set to points at infinity of  Aelvo and voe0A, respectively. I f  in obtaining K,+i 
from K,, the vertices F* and/or  L * are deleted, we update them accordingly as follows (of 
course only the required updates are performed): (i) v, is reflex. F* ~ w', L* ~- w" if Vo 
hes to the left of  Ae,+~v,+l and F* ~-- w", L* ~- w' otherwise. (li) v, is convex. F* ~- 
w", L* ~ w' if v0 lies to the left of v~e,+~A and F* ~ w', L* ~-- w" otherwise. Note that 
w', w" are determined in cases (l I) and (2 l), and that if w" does not exist, its place is 
taken by the point at infinity of  the half-hne being considered. 

'4 ) 
v [+ l  

K i , 1  

a b 
Flo 6 Illustrations for the proof of Theorem 1 
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We say that Ks, for s = / ,  .... n - 1, is vacuous if the above test fails when processing 
edge e,. We have the following corollary: 

COROLLARY 1. Suppose K~ is not vacuous and let p be any point in K, Also let aj be the 
interior angle at p in the triangle (Pb-lb) ,  positive if  (pb)  follows ( P b - 0  counterclockw,se, 

for  j = 1 . . . . .  i. Then we claim that ~ - 1  aj < 3~r. 
PROOF. Suppose that ~ j . la j  _> 3¢r. This means that the boundary of  P, starting at v0, 

wraps around p ~ K, as shown either m Figure 7(a) or in Figure 7(b). In both cases, K, is 
bounded. In the first case the boundary of  P crosses 1 in at least two points, each on 
opposite sides of  the point(s) of  support; in the second case, the boundary of  P makes a full 
turn around v0 and must therefore cross ] .  In either case, the additional test described 
above will fail, contrary to the hypothesis that K, is not vacuous. []  

3. Performance Analysis 

It Is convenient to analyze separately the two basic types of  actions performed by the 
kernel algorithm. The first concerns updating the kernel, by intersecting K, with Ae,+iA to 
obtain K,+i; the second concerns updating F, and L, and consists of  counterclockwise or 
forward scans of  K, to obtain the new vertices of  support (note however that in some cases, 
as (1.1) and (2.1), the update of  K, implicitly yields updates for one or the other of  the 
support vertices). 

We begin by considering intersecuon updates. In case (1.1) (when the algorithm does 
not terminate), we scan K, starting from F, both clockwise and counterclockwise (this scan 
also finds F,÷i). Let v, be the total number of  edges visited before finding the two 
intersections w' and w' .  This process actually removes v, - 2 edges from K, (those 
comprised between w, and wt-1 in Figure 3(a)), and since each of  the removed edges is 
collinear with a distinct edge of  P, we have ~(v, - 2) _< n. Thus ~v,, the total number of  
vertices visited by the algorithm in handling case (1.1), is bounded above by 3n, Le. it is 
O(n). The same argument, with insignificant modifications, can be made for case (2.1). 

Next, we consider those updates of  the support vertices F and L which are not ~mphcitly 
accomphshed m the intersecUon process. These updates occur for L in all cases (1.1), (1.2), 
(2.1), and (2.2), and for F in cases (1.2) and (2.2). Note that in all of  these cases the vertices 
of  support advance on the boundary of  K,. Let us consider, for example, the update of  L 
in case (1.1); the other cases can be treated analogously. Consider the set of  edges of  K,+i 
which the algorithm visits before determining L,+i; the visit to the edge immediately 
following L,+~ is referred to as an overshoot. It is immediately realized that in handling 
case (1.1) the number of  overshoots is globally O(n), since there is at most one overshoot 
per vertex of  P. Next, we claim that, ignoring overshoots, any edge is visited at most twice. 
In fact, assume that, when processing v,, an edge is being visited for the third time. Because 

/ 
/ 

I" / /  X ~  / / 

FIG 7 lllustraUons for the proof of Corollary 1 
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of the forward scan feature, this lmphes that the boundary of P wraps around K, at least 
twice, i.e. there is some point q E K, for which the construction of  Corollary 1 yields ~aj  
_> 4¢r, contrary to Corollary 1. 

Thus the work performed in handling case (1. l ) - - a s  well as cases (1.2), (2.1), and (2.2)-- 
is O(n). Finally, the updates of  F* and L* are all accomplished implicitly in finding w' 
and w". Therefore, we conclude that the entire algorithm runs in time proportional to the 
number of  vertices of  P and is optimal to within a constant factor. 
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