
GEOMETRIC SEARCHING

PART 1: POINT LOCATION in 2D

PETR FELKEL
FEL CTU PRAGUE

felkel@fel.cvut.cz

https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg] and [Mount]

Version from 05.10.2022

https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Felkel: Computational geometry

(2)

1. Point location (static) – Where am I?
– (Find the name of the state, pointed by mouse cursor)

– Search space S: a planar (spatial) subdivision

– Query: point Q

– Answer: region containing Q

2. Orthogonal range searching – Query a data base
(Find points, located in d-dimensional axis-parallel box)

– Search space S: a set of points

– Query: set of orthogonal intervals q

– Answer: subset of points in the box

– (Was studied in DPG)

Geometric searching problems

Felkel: Computational geometry

(3)

Part 1: Point location

◼ Point location in polygon

◼ Planar subdivision

◼ DCEL data structure

◼ Point location in planar subdivision

– slabs

– monotone sequence

– trapezoidal map

Felkel: Computational geometry

(4)

1. Ray crossing - O(n)

– Compute number t of ray

intersections with polygon edges
(e.g., ray X+ after point moved to origin)

– If odd(t) then inside

else out

– Singular cases must be handled!

• Do not count horizontal line segments

• Take non-horizontal segments as half-open

(upper point not part of the segment)

Point location in polygon by ray crossing

+1 1 → in

+1 +1 +1 3 → in

+0 +1
1 → in

+2
2 → out

+1 +1 +1 +1
4 → out

0 → out
+0 +0

0 → out
+0 +0

+1
2 → out

+1+1

+0+0
3 → in

+1 +1+1

Felkel: Computational geometry

(5)

Point location in polygon

2. Winding number - O(n)

(number of turns around the point)

– Sum oriented angles 𝜑𝑖 = ∢(𝑝𝑖 , 𝑧, 𝑝𝑖+1)

– If (∑𝜑𝑖 = 2𝜋) then inside (1 turn)

– If (∑𝜑𝑖 = 0) then outside (no turn)

– About 20-times slower than ray crossing

2 0

Felkel: Computational geometry

(6)

Point location in convex polygon

3. Position relative to all edges

– For convex polygons

– If (left from all edges) then inside

◼ Position of point in relation to the line segment

(Determination of convex polygon orientation)

Convex polygon, non-collinear points

𝑝𝑖 = 𝑥𝑖 , 𝑦𝑖 , 1 , 𝑝𝑖+1 = 𝑥𝑖+1, 𝑦𝑖+1, 1 , 𝑝𝑖+2 = [𝑥𝑖+2, 𝑦𝑖+2, 1]

> 0 => point left from edge (for CCW polygon)

< 0 => point right from edge (for CW polygon)

pi pi+1

pi+2

𝑥𝑖 𝑦𝑖 1
𝑥𝑖+1 𝑦𝑖+1 1
𝑥𝑖+2 𝑦𝑖+2 1

Felkel: Computational geometry

(9)

Area of Triangle

𝑇 =
1

2
𝐩 × 𝐪

𝐩 = 𝑞 − 𝑝

𝐪 = 𝑟 − 𝑝

2𝑇 = 𝐩𝑥𝐪𝑦 − 𝐩𝑦𝐪𝑥 using vector product 𝐩 × 𝐪

𝑝 𝑞

𝑟

p

q

= sign(𝑝𝑥𝑞𝑦 + 𝑞𝑥𝑟𝑦 + 𝑟𝑥𝑝𝑦 − 𝑝𝑥𝑟𝑦 − 𝑞𝑥𝑝𝑦 − 𝑟𝑥𝑞𝑦)

= sign 𝑞𝑥 − 𝑝𝑥 𝑟𝑦 − 𝑝𝑦 − 𝑞𝑦 − 𝑝𝑦 𝑟𝑥 − 𝑝𝑥 for pivot 𝑝

2𝑇 =

𝑝𝑥 𝑝𝑦 1

𝑞𝑥 𝑞𝑦 1

𝑟𝑥 𝑟𝑦 1

Orientation is computed as sign 2T =

using coordinates of points

Felkel: Computational geometry

(10)

Point location in polygon

4. Binary search in angles

Works for convex and star-shaped polygons

1. Choose any point q inside / in the polygon core

2. q forms wedges with polygon edges

3. Binary search of wedge výseč based on angle

4. Finally compare with one edge (left, CCW => in,

right, CW => out)

q

p1

p2

p3

p4

p5

z

z´

CCW CW

Felkel: Computational geometry

(11)

Planar graph

Planar graph U=set of nodes, H=set of arcs

= Graph G = (U,H) is planar, if it can be embedded into

plane without crossings

Planar embedding of planar graph G = (U,H)

= mapping of each node in U to vertex in the plane and

each arc in H into simple curve (edge) between the two

images of extreme nodes of the arc, so that no two

images of arc intersect except at their endpoints

Every planar graph can be embedded in such a way that

arcs map to straight line segments [Fáry 1948]

=> Planar Straight Line Graph

Felkel: Computational geometry

(12)

Planar subdivision

= Partition of the plane determined by straight line

planar embedding of a planar graph.

Also called PSLG – Planar Straight Line Graph

◼ (embedding of a planar graph in the plane such

that its arcs are mapped into straight line

segments)

connected disconnected

Felkel: Computational geometry

(13)

Planar subdivision

Vertex = embedding of graph node

Edge = embedding of graph arc

(open – without vertices)

Complexity (size) of a subdivision = sum of number of vertices +

+ number of edges +

+ number of faces it consists of

Face = maximal connected subset of a plane that

doesn’t contain points on edges nor vertices

(open polygonal region whose

boundary is formed by edges and vertices

from the subdivision)

Euler’s formula: 𝑉 − 𝐸 + 𝐹 ≥ 2
𝑉 = 𝑛, 𝐸 ≤ 3𝑣 – 6, 𝐹 ≤ 2𝑣 – 4 𝑂(𝑛) data structure

Felkel: Computational geometry

(14)

DCEL = Double Connected Edge List

◼ A structure for storage of planar subdivision

◼ Operations like:

Pointers to next

and prev edge

Walk around boundary of a
given face

Get incident face

Half-edge, op. Twin(e),

unique Next(e), Prev(e)

[Berg] [Berg]

[Eastman 1982]

Felkel: Computational geometry

(15)

DCEL = Double Connected Edge List

◼ Vertex record v

– Coordinates(v) and pointer to one IncidentEdge(v)

◼ Face record f

– OuterComponent(f) pointer (boundary)

– List of holes – InnerComponent(f)

◼ Half-edge record e

– Origin(e), Twin(e), IncidentFace(e)

– Next(e), Prev(e)

– [Dest(e) = Origin(Twin(e))]

◼ Possible attribute data for each

[Berg]

Felkel: Computational geometry

(16)

DCEL = Double Connected Edge List

One of edges

List of holes

[Berg]

G

T

T

G – geometry

T – topology

Felkel: Computational geometry

(17)

DCEL simplifications

◼ If no operations with vertices and no attributes

– No vertex table (no separate vertex records)

– Store vertex coords in half-edge origin (in the half-edge table)

◼ If no need for faces (e.g. river network)

– No face record and no IncidentFace() field (in the half-edge table)

◼ If only connected subdivision allowed

– Join holes with rest by dummy edges

– Visit all half-edges by simple graph traversal

– No InnerComponent() list for faces

Other structures for representing PSLG

◼ Winged edge [Baumgart 1975]

– The oldest,

complicated manipulation

– Randomly stored edge direction

around faces

◼ Quad edge [Guibas & Stolfi 1985]

– Stores PSLG and its dual

– Pointers to edges
• Around vertex

• Around face

– E.g., for Voronoi diagrams & Delaunay triangulations

Felkel: Computational geometry

(18)

https://i.stack.imgur.com/yadGo.png

Quad edge

Felkel: Computational geometry

(19)

Felkel: Computational geometry

(20)

Point location in planar subdivision

◼ Using special search structures

an optimal algorithm can be made with

– O(n) preprocessing,

– O(n) memory and

– O(log n) query time.

◼ Simpler methods

1.Slabs O(log n) query, O(n2) memory

2.monotone chain tree O(log2 n) query, O(n2) memory

3.trapezoidal map O(log n) query expected time

O(n) expected memory

Felkel: Computational geometry

(21)

1. Vertical (horizontal) slabs [Dobkin and Lipton, 1976]

◼ Draw vertical or horizontal lines through vertices

◼ It partitions the plane into vertical slabs

– Avoid points with same x coordinate (to be solved later)

[Berg]

Felkel: Computational geometry

(22)

Horizontal slabs example

2. Find slab part in Tx for x

1. Find slab

in Ty for y

Tx and Ty are arrays

Felkel: Computational geometry

(23)

Horizontal slabs complexity

◼ Query time 𝑂(log 𝑛)

𝑂(log 𝑛) time in slab array 𝑇𝑦 (size max 2n endpoints)

+ 𝑂(log 𝑛) time in slab array 𝑇𝑥 (slab crossed max by 𝑛
edges)

◼ Memory 𝑂(𝑛2)

– Slabs: Array with y-coordinates of vertices … 𝑂(𝑛)

– For each slab 𝑂(𝑛) edges intersecting the slab

𝑂(𝑛2) construction

𝑂(log 𝑛) query

𝑂(𝑛2) memory

[Berg]

𝑛

4

𝑛

4
slabs

𝑛

4
+2

𝑛

4
+

𝑛

4
= 𝑂 𝑛 edges

𝑛

4
∗
𝑛

4
= 𝑂 𝑛2 faces

Felkel: Computational geometry

(24)

2. Monotone chain tree [Lee and Preparata, 1977]

◼ Construct monotone planar subdivision
– The edges are all monotone in the same direction

◼ Each separator chain
– is monotone (can be projected to line and searched)

– splits the plane into two parts – allows binary search

◼ Algorithm
– Preprocess: Find the separators (e.g., horizontal)

– Search:
Binary search among separators (Y) … O(log n) times

Binary search along the separator (X) … O(log n)

– Not optimal, but simple

– Can be made optimal, but the algorithm
and data structures are complicated

O(log2 n) query

O(n2) memory

Felkel: Computational geometry

(25)

0. Construct the chains

and the chain tree

1. Start with the middle chain

2. Find projection of x in the projection of

the chain – determine the segment

3. Identify position of x in relation to the

segment – Left or Right

(This is the position of x relatively to the

whole chain)

4. Continue in L or R chain -> goto 2.

or stop if in the leaf

C2

C1
C3

C5

A B D

F E

C4

G

Monotone chain tree example

C1

C2

C5

C2

C3

P

L

A B

D

E
F C4

G

C3 D

Felkel: Computational geometry

(26)

3. Trapezoidal map (TM) search

◼ The simplest and most practical known optimal algorithm

◼ Randomized algorithm with O(n) expected storage and
O(log n) expected query time

◼ Expectation depends on the random order of segments
during construction, not on the position of the segments

◼ TM is refinement of original subdivision

◼ Converts complex shapes into simple ones

◼ Weaker assumption on input:
– Input individual segments,

not polygons

– S = {s1, s2, …, sn}

– Si subset of first i segments

– Answer: segment below
the pointed trapezoid ()

[Berg]

Felkel: Computational geometry

(27)

Trapezoidal map of line segments in general position

Input: individual segments S

– They do not intersect, except

in endpoints

– No vertical segments

– No 2 distinct endpoints with

the same x-coordinate

Trapezoidal map T

– Bounding rectangle

– 4 Bullets up and down

– Stop on input segment or

on bounding rectangle

[Mount]

Constru-

ction

Felkel: Computational geometry

(28)

Trapezoidal map of line segments in general position

◼ Faces are trapezoids ∆

with vertical sides

◼ Given n segments, TM has

– at most 6n+4 vertices

– at most 3n+1 trapezoids

◼ Proof:

– each endpoint 2 bullets -> 1+2 points

– 2n endpoints * 3 + 4 = 6n+4 vertices

– start point –> max 2 trapezoids ∆

– end point –> 1 trapezoid ∆

– 3 * (n segments) + 1 left ∆ => max 3n+1 ∆

+1

[Mount]

BBOX

Trapezoidal map of line segments in general position

Each face has

◼ one or two vertical sides (trapezoid or triangle) and

◼ exactly two non-vertical sides

Felkel: Computational geometry

(29)

[Berg]

Two vertical sidesOne vertical side

Two non-vertical sides

Non-vertical side or

◼ is contained in one of the segments of set S

◼ or in the horizontal edge of bounding rectangle R

Felkel: Computational geometry

(30)

top(∆) - bounds from above

bottom(∆) - bounds from below
[Berg]

segments:

Vertical sides – left vertical side of

Felkel: Computational geometry

(31)

∆

∆

∆∆

Left vertical side is defined by the segment end-point p=leftp(∆)

(a) common left point p itself

(b) by the lower vert. extension of left point p ending at bottom()

(c) by the upper vert. extension of left point p ending at top()

(d) by both vert. extensions of the right point p
(e) the left edge of the bounding rectangle R (leftmost only)

[Berg]

Vertical sides - summary

Vertical edges are defined by segment endpoints

◼ leftp(∆) = the end point defining the left edge of ∆

◼ rightp(∆) = the end point defining the right edge of ∆

leftp(∆) is

◼ the left endpoint of top() or bottom() or both (b, c, a)

◼ the right point of a third segment (d)

◼ the lower left corner of the bounding rectangle R (e)

Felkel: Computational geometry

(32)

Trapezoid ∆

◼ Trapezoid ∆ is uniquely defined by

– the segments top(∆), bottom(∆)

– And by the endpoints leftp(∆), rightp(∆)

Felkel: Computational geometry

(33)

Adjacency of trapezoids segments in general position

◼ Trapezoids ∆ and ∆’ are adjacent, if they meet along a

vertical edge

◼ ∆1= upper left neighbor of ∆ (common top(∆) edge)

◼ ∆2 = lower left neighbor of ∆ (common bottom(∆))

◼ ∆3 is a right neighbor of ∆ (common top(∆) or bottom(∆))

Felkel: Computational geometry

(34)

[Berg]

Representation of the trapezoidal map T

Special trapezoidal map structure Τ(S) stores:

◼ Records for all line segments and end points

◼ Records for each trapezoid ∆ ϵ Τ(S)

– Definition of ∆ - pointers to segments top(∆), bottom(∆),

- pointers to points leftp(∆), rightp(∆)

– Pointers to its max four neighboring trapezoids

– Pointer to the leaf in the search structure D (see below)

◼ Does not store the geometry explicitly!

◼ Geometry of trapezoids is computed in O(1)

Felkel: Computational geometry

(35)

X

Felkel: Computational geometry

(36)

Construction of trapezoidal map

◼ Randomized incremental algorithm

1. Create the initial bounding rectangle (T0 =1∆) … O(n)

2. Randomize the order of segments in S

3. for i = 1 to n do

4. Add segment Si to trapezoidal map Ti

5. locate left endpoint of Si in Ti-1 ⇒ start trapezoid

6. find intersected trapezoids

7. shoot 4 bullets from endpoints of Si

8. trim intersected vertical bullet paths
[Mount]

⇒ create new trapezoids

Felkel: Computational geometry

(37)

Trapezoidal map point location

◼ While creating the trapezoidal map T

construct the Point location data structure D

◼ Query this data structure

Felkel: Computational geometry

(38)

Point location data structure D

◼ Rooted directed acyclic graph (not a tree!!)
– Leaves – trapezoids, each appears exactly once

– Internal nodes – 2 outgoing edges, guide the search

• x-node – x-coord x0 of segment start- or end-point
left child lies left of vertical line x=x0

right child lies right of vertical line x=x0

– used first to detect the vertical slab

• y-node – pointer to the line segment of the subdivision (not only its y!!!)
left – above, right – below

[Mount]

p1

s1

X

Felkel: Computational geometry

(39)

TM search example

right

left

below

above

right

[Mount]

D

Felkel: Computational geometry

(40)

Construction – addition of a segment

a) Single (left or right) endpoint - 3 new trapezoids

Trapezoid A replaced by

– * x-node for point p

– add left leaf for X ∆

– add right subtree

– * y-node for segment s

– add left leaf for Y ∆ above

– add right leaf Z ∆ below

[Mount]

Felkel: Computational geometry

(41)

Construction – addition of a segment

b) Two segment endpoints – 4 new trapezoids

Trapezoid A replaced by

– * x-node for point p

– * x-node for point q

– * y-node for segment s

– add leaves for U, X, Y, Z[Mount]

Felkel: Computational geometry

(42)

Construction – addition of a segment

c) No segment endpoint – create 2 trapezoids

Y

Z

sA

Trapezoid A replaced by

– * y-node for segment s

– add leaves for Y, Z

[Mount]

Felkel: Computational geometry

(43)

Segment insertion example

[Mount]

trapezoids after

trapezoids before

C D E G

H I J L K M N

4 → 7

Felkel: Computational geometry

(44)

Analysis and proofs

◼ This holds:

– Number of newly created ∆ for inserted segment 𝑂(1)
(some added, some removed)

– Search structure size is max 𝑂(𝑛2), but 𝑂(𝑛) expected

– Search point 𝑂(log 𝑛) in average

=> Expected construction 𝑂(𝑛(1 + log 𝑛)) = 𝑂(𝑛 log 𝑛)

◼ For detailed analysis and proofs see

– [Berg] or [Mount]

Felkel: Computational geometry

(45)

Handling of degenerate cases - principle

◼ No distinct endpoints lie on common vertical line

– Rotate or shear the coordinates 𝑥′ = 𝑥 + 𝜀𝑦, 𝑦′ = 𝑦

[Berg]

Felkel: Computational geometry

(46)

Handling of degenerate cases - realization

◼ Trick

– store original (𝑥, 𝑦), not the sheared 𝑥’, 𝑦’

– we need to perform just 2 operations:

1. For two points p,q determine if transformed

point 𝑞 is to the left, to the right or on vertical line through

point 𝑝
– If 𝑥𝑝 = 𝑥𝑞 then compare 𝑦𝑝 and 𝑦𝑞 (on only for 𝑦𝑝 = 𝑦𝑞)

– => use the original coords (𝑥, 𝑦) and lexicographic order

2. For segment given by two points decide if 3rd point 𝑞 lies

above, below, or on the segment 𝑝1 𝑝2
– Mapping preserves this relation

– => use the original coords (𝑥, 𝑦)

Felkel: Computational geometry

(47)

Point location summary

◼ Slab method [Dobkin and Lipton, 1976]

– O(n2) memory O(log n) time

◼ Monotone chain tree in planar subdivision [Lee and Preparata,77]

– O(n2) memory O(log2 n) time

◼ Layered directed acyclic graph (Layered DAG) in planar
subdivision [Chazelle , Guibas, 1986] [Edelsbrunner, Guibas, and Stolfi, 1986]

– O(n) memory O(log n) time => optimal algorithm
of planar subdivision search
(optimal but complex alg.
=> see elsewhere)

◼ Trapezoidal map

– O(n) expected memory O(log n) expected time

– O(n log n) expected preprocessing (simple alg.)

Felkel: Computational geometry

(48)

References

◼ [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:

Computational Geometry: Algorithms and Applications, Springer-Verlag,

3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5

http://www.cs.uu.nl/geobook/

◼ [Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016,

University of Maryland, Lectures 9, 10

http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf

http://www.win.tue.nl/~mdberg/
http://tclab.kaist.ac.kr/~otfried/
http://www.cs.uu.nl/staff/marc.html
http://www.cs.uu.nl/staff/markov.html
http://www.cs.uu.nl/geobook/
http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf

