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1. Point location (static) – Where am I? 
– (Find the name of the state, pointed by mouse cursor)

– Search space S: a planar (spatial) subdivision

– Query: point Q

– Answer: region containing Q

2. Orthogonal range searching  – Query a data base
(Find points, located in d-dimensional axis-parallel box)

– Search space S: a set of points

– Query: set of orthogonal intervals q

– Answer: subset of points in the box

– (Was studied in DPG)

Geometric searching problems
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Part 1: Point location

◼ Point location in polygon

◼ Planar subdivision

◼ DCEL data structure

◼ Point location in planar subdivision

– slabs

– monotone sequence

– trapezoidal map
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1.  Ray crossing - O(n)

– Compute number t of ray

intersections with polygon edges 
(e.g., ray X+ after point moved to origin)

– If odd(t) then inside

else out

– Singular cases must be handled!

• Do not count horizontal line segments

• Take non-horizontal segments as half-open

(upper point not part of the segment)

Point location in polygon by ray crossing

+1 1 → in

+1 +1 +1 3 → in

+0 +1
1 → in

+2
2 → out

+1 +1 +1 +1
4 → out

0 → out
+0 +0

0 → out
+0 +0

+1
2 → out

+1+1

+0+0
3 → in

+1 +1+1
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Point location in polygon

2.  Winding number - O(n)

(number of turns around the point)

– Sum oriented angles 𝜑𝑖 = ∢(𝑝𝑖 , 𝑧, 𝑝𝑖+1)

– If (∑𝜑𝑖 = 2𝜋) then inside (1 turn)

– If (∑𝜑𝑖 = 0)   then outside (no turn)

– About 20-times slower than ray crossing

2 0
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Point location in convex polygon

3.  Position relative to all edges

– For convex polygons

– If (left from all edges) then inside

◼ Position of point in relation to the line segment 

(Determination of convex polygon orientation) 

Convex polygon, non-collinear points 

𝑝𝑖 = 𝑥𝑖 , 𝑦𝑖 , 1 , 𝑝𝑖+1 = 𝑥𝑖+1, 𝑦𝑖+1, 1 , 𝑝𝑖+2 = [𝑥𝑖+2, 𝑦𝑖+2, 1]

> 0  => point left from edge (for CCW polygon)  

< 0  => point right from edge (for CW polygon)

pi pi+1

pi+2

𝑥𝑖 𝑦𝑖 1
𝑥𝑖+1 𝑦𝑖+1 1
𝑥𝑖+2 𝑦𝑖+2 1
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Area of Triangle

𝑇 =
1

2
𝐩 × 𝐪

𝐩 = 𝑞 − 𝑝

𝐪 = 𝑟 − 𝑝

2𝑇 = 𝐩𝑥𝐪𝑦 − 𝐩𝑦𝐪𝑥 using vector product 𝐩 × 𝐪

𝑝 𝑞

𝑟

p

q

= sign(𝑝𝑥𝑞𝑦 + 𝑞𝑥𝑟𝑦 + 𝑟𝑥𝑝𝑦 − 𝑝𝑥𝑟𝑦 − 𝑞𝑥𝑝𝑦 − 𝑟𝑥𝑞𝑦)

= sign 𝑞𝑥 − 𝑝𝑥 𝑟𝑦 − 𝑝𝑦 − 𝑞𝑦 − 𝑝𝑦 𝑟𝑥 − 𝑝𝑥 for pivot 𝑝

2𝑇 =

𝑝𝑥 𝑝𝑦 1

𝑞𝑥 𝑞𝑦 1

𝑟𝑥 𝑟𝑦 1

Orientation is computed as sign 2T =

using coordinates of points
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Point location in polygon

4.  Binary search in angles

Works for convex and star-shaped polygons

1. Choose any point q inside / in the polygon core 

2. q forms wedges with polygon edges

3. Binary search of wedge výseč based on angle

4. Finally compare with one edge (left, CCW  => in, 

right, CW => out)

q

p1

p2

p3

p4

p5

z

z´

CCW CW
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Planar graph

Planar graph   U=set of nodes, H=set of arcs  

=  Graph G = (U,H) is planar, if it can be embedded into 

plane without crossings

Planar embedding of planar graph G = (U,H) 

=  mapping of each node in U to vertex in the plane and 

each arc in H into simple curve (edge) between the two 

images of extreme nodes of the arc, so that no two 

images of arc intersect except at their endpoints

Every planar graph can be embedded in such a way that 

arcs map to straight line segments [Fáry 1948]

=> Planar Straight Line Graph 
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Planar subdivision

= Partition of the plane determined by straight line 

planar embedding of a planar graph.

Also called  PSLG – Planar Straight Line Graph

◼ (embedding of a planar graph in the plane such 

that its arcs are mapped into straight line 

segments)

connected disconnected
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Planar subdivision

Vertex = embedding of graph node

Edge = embedding of graph arc 

(open – without vertices)

Complexity (size) of a subdivision = sum of number of vertices +

+ number of edges + 

+ number of faces it consists of

Face = maximal connected subset of a plane that 

doesn’t contain points on edges nor vertices 

(open  polygonal region whose 

boundary is formed by edges and vertices 

from the subdivision)

Euler’s formula: 𝑉 − 𝐸 + 𝐹 ≥ 2
𝑉 = 𝑛, 𝐸 ≤ 3𝑣 – 6, 𝐹 ≤ 2𝑣 – 4 𝑂(𝑛) data structure
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DCEL = Double Connected Edge List

◼ A structure for storage of planar subdivision

◼ Operations like:

Pointers to next 

and prev edge

Walk around boundary of a 
given face

Get incident face

Half-edge, op. Twin(e),

unique Next(e), Prev(e) 

[Berg] [Berg]

[Eastman 1982]



Felkel: Computational geometry

(15)

DCEL = Double Connected Edge List

◼ Vertex record v

– Coordinates(v) and pointer to one IncidentEdge(v)

◼ Face record f

– OuterComponent(f) pointer (boundary)

– List of holes – InnerComponent(f)

◼ Half-edge record e

– Origin(e), Twin(e), IncidentFace(e)

– Next(e), Prev(e)

– [ Dest(e) = Origin(Twin(e)) ]

◼ Possible attribute data for each

[Berg]
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DCEL = Double Connected Edge List

One of edges

List of holes

[Berg]

G

T

T

G – geometry

T  – topology 



Felkel: Computational geometry

(17)

DCEL simplifications

◼ If no operations with vertices and no attributes

– No vertex table (no separate vertex records)

– Store vertex coords in half-edge origin (in the half-edge table)

◼ If no need for faces (e.g. river network)

– No face record and no IncidentFace() field (in the half-edge table)

◼ If only connected subdivision allowed

– Join holes with rest by dummy edges

– Visit all half-edges by simple graph traversal 

– No InnerComponent() list for faces



Other structures for representing PSLG

◼ Winged edge [Baumgart 1975]

– The oldest, 

complicated manipulation

– Randomly stored edge direction 

around faces

◼ Quad edge [Guibas & Stolfi 1985]

– Stores PSLG and its dual

– Pointers to edges
• Around vertex

• Around face

– E.g., for Voronoi diagrams & Delaunay triangulations
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https://i.stack.imgur.com/yadGo.png



Quad edge
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Point location in planar subdivision

◼ Using special search structures

an optimal algorithm can be made with

– O(n) preprocessing,

– O(n) memory and

– O(log n) query time.

◼ Simpler methods

1.Slabs O(log n) query, O(n2) memory

2.monotone chain tree O(log2 n) query, O(n2) memory 

3.trapezoidal map O(log n) query expected time

O(n) expected memory
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1. Vertical (horizontal) slabs       [Dobkin and Lipton, 1976]

◼ Draw vertical or horizontal lines through vertices

◼ It partitions the plane into vertical slabs

– Avoid points with same x coordinate (to be solved later)

[Berg]
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Horizontal slabs example

2. Find slab part in Tx for x

1. Find slab 

in Ty  for y

Tx and Ty are arrays



Felkel: Computational geometry

(23)

Horizontal slabs complexity

◼ Query time 𝑂(log 𝑛)

𝑂(log 𝑛) time in slab array 𝑇𝑦 (size max 2n endpoints)

+ 𝑂(log 𝑛) time in slab array 𝑇𝑥 (slab crossed max by 𝑛
edges)

◼ Memory 𝑂(𝑛2)

– Slabs: Array with y-coordinates of vertices … 𝑂(𝑛)

– For each slab 𝑂(𝑛) edges intersecting the slab

𝑂(𝑛2) construction 

𝑂(log 𝑛) query

𝑂(𝑛2) memory

[Berg]

𝑛

4

𝑛

4
slabs

𝑛

4
+2

𝑛

4
+

𝑛

4
= 𝑂 𝑛 edges

𝑛

4
∗
𝑛

4
= 𝑂 𝑛2 faces
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2. Monotone chain tree [Lee  and Preparata, 1977]

◼ Construct monotone planar subdivision
– The edges are all monotone in the same direction

◼ Each separator chain 
– is monotone (can be projected to line and searched)

– splits the plane into two parts – allows binary search

◼ Algorithm
– Preprocess: Find the separators (e.g., horizontal)

– Search: 
Binary search among separators (Y)             … O(log n) times

Binary search along the separator (X)      … O(log n) 

– Not optimal, but simple

– Can be made optimal, but the algorithm 
and data structures are complicated

O(log2 n) query

O(n2) memory
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0. Construct the chains 

and the chain tree

1. Start with the middle chain

2. Find projection of x in the projection of 

the chain – determine the segment

3. Identify position of x in relation to the 

segment – Left or Right 

(This is the position of x relatively to the 

whole chain)

4. Continue in L or R chain -> goto 2.

or stop if in the leaf 

C2

C1
C3

C5

A B D

F E

C4

G

Monotone chain tree example

C1

C2

C5

C2

C3

P

L

A B

D

E
F C4

G

C3 D
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3. Trapezoidal map (TM) search

◼ The simplest and most practical known optimal algorithm

◼ Randomized algorithm with O(n) expected storage and 
O(log n) expected query time

◼ Expectation depends on the random order of segments 
during construction, not on the position of the segments

◼ TM is refinement of original subdivision

◼ Converts complex shapes into simple ones

◼ Weaker assumption on input:
– Input individual segments, 

not polygons

– S = {s1, s2, …, sn}

– Si subset of first i segments 

– Answer: segment below 
the pointed trapezoid ( )

[Berg]
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Trapezoidal map of line segments in general position

Input: individual segments S

– They do not intersect, except

in endpoints

– No vertical segments

– No 2 distinct endpoints with

the same x-coordinate

Trapezoidal map T

– Bounding rectangle

– 4 Bullets up and down

– Stop on input segment or 

on bounding rectangle

[Mount]

Constru-

ction
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Trapezoidal map of line segments in general position

◼ Faces are trapezoids ∆

with vertical sides

◼ Given n segments, TM has

– at most 6n+4 vertices

– at most 3n+1 trapezoids

◼ Proof:

– each endpoint 2 bullets -> 1+2 points

– 2n endpoints * 3 + 4 = 6n+4 vertices

– start point –> max 2 trapezoids ∆

– end point  –> 1 trapezoid ∆

– 3 * (n segments) + 1 left ∆ => max 3n+1 ∆

+1

[Mount]

BBOX



Trapezoidal map of line segments in general position

Each face has 

◼ one or two vertical sides (trapezoid or triangle) and 

◼ exactly two non-vertical sides 
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[Berg]

Two vertical sidesOne vertical side



Two non-vertical sides

Non-vertical side          or

◼ is contained in one of the segments of set S

◼ or in the horizontal edge of bounding rectangle R
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top(∆) - bounds from above

bottom(∆) - bounds from below
[Berg]

segments:



Vertical sides – left vertical side of 
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∆

∆

∆∆

Left vertical side is defined by the segment end-point p=leftp(∆)

(a) common left point p itself

(b) by the lower vert. extension of left point p ending at bottom() 

(c) by the upper vert. extension of left point p ending at top()

(d) by both vert. extensions of the right point p
(e) the left edge of the bounding rectangle R (leftmost only)

[Berg]



Vertical sides - summary

Vertical edges are defined by segment endpoints

◼ leftp(∆) = the end point defining the left edge of ∆

◼ rightp(∆) = the end point defining the right edge of ∆

leftp(∆) is 

◼ the left endpoint of top() or bottom() or both (b, c, a)

◼ the right point of a third segment (d)

◼ the lower left corner of the bounding rectangle R         (e)
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Trapezoid ∆

◼ Trapezoid ∆ is uniquely defined by 

– the segments top(∆), bottom(∆)

– And by the endpoints leftp(∆), rightp(∆)
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Adjacency of trapezoids segments in general position

◼ Trapezoids ∆ and ∆’ are adjacent, if they meet along a 

vertical edge

◼ ∆1= upper left neighbor of ∆ (common top(∆) edge)

◼ ∆2 = lower left neighbor of ∆ (common bottom(∆))

◼ ∆3 is a right neighbor of ∆ (common top(∆) or bottom(∆) )
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[Berg]



Representation of the trapezoidal map T

Special trapezoidal map structure Τ(S) stores:

◼ Records for all line segments and end points

◼ Records for each trapezoid ∆ ϵ Τ(S)

– Definition of ∆ - pointers to segments top(∆), bottom(∆), 

- pointers to points leftp(∆), rightp(∆)

– Pointers to its max four neighboring trapezoids

– Pointer to the leaf    in the search structure D (see below)

◼ Does not store the geometry explicitly!

◼ Geometry of trapezoids is computed in O(1)
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X
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Construction of trapezoidal map 

◼ Randomized incremental algorithm

1. Create the initial bounding rectangle (T0 =1∆) … O(n)

2. Randomize the order of segments in S

3. for  i = 1 to n do

4. Add segment Si to trapezoidal map Ti

5. locate left endpoint of Si in Ti-1 ⇒ start trapezoid

6. find intersected trapezoids

7. shoot 4 bullets from endpoints of Si

8. trim intersected vertical bullet paths
[Mount]

⇒ create new trapezoids
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Trapezoidal map point location

◼ While creating the trapezoidal map T

construct the Point location data structure D

◼ Query this data structure
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Point location data structure D

◼ Rooted directed acyclic graph (not a tree!!)
– Leaves – trapezoids, each appears exactly once

– Internal nodes – 2 outgoing edges, guide the search

• x-node – x-coord x0 of segment start- or end-point
left child lies left of vertical line x=x0

right child lies right of vertical line x=x0

– used first to detect the vertical slab 

• y-node – pointer to the line segment of the subdivision (not only its y!!!)
left – above, right – below 

[Mount]

p1

s1

X
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TM search example

right

left

below

above

right

[Mount]

D
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Construction – addition of a segment

a) Single (left or right) endpoint - 3 new trapezoids

Trapezoid A replaced by

– * x-node for point p

– add left leaf for X ∆

– add right subtree

– * y-node for segment s

– add left leaf for Y ∆ above

– add right leaf Z ∆ below

[Mount]
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Construction – addition of a segment

b) Two segment endpoints – 4 new trapezoids

Trapezoid A replaced by

– * x-node for point p

– * x-node for point q

– * y-node for segment s

– add leaves for U, X, Y, Z[Mount]
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Construction – addition of a segment

c) No segment endpoint – create 2 trapezoids

Y

Z

sA

Trapezoid A replaced by

– * y-node for segment s

– add leaves for Y, Z

[Mount]
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Segment insertion example

[Mount]

trapezoids after

trapezoids before 

C D E G

H I J L K M N

4 → 7
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Analysis and proofs

◼ This holds:

– Number of newly created ∆ for inserted segment  𝑂(1)
(some added, some removed)

– Search structure size is max 𝑂(𝑛2), but 𝑂(𝑛) expected

– Search point 𝑂(log 𝑛) in average

=> Expected construction 𝑂(𝑛(1 + log 𝑛)) = 𝑂(𝑛 log 𝑛)

◼ For detailed analysis and proofs see 

– [Berg] or [Mount]



Felkel: Computational geometry

(45)

Handling of degenerate cases - principle 

◼ No distinct endpoints lie on common vertical line

– Rotate or shear the coordinates 𝑥′ = 𝑥 + 𝜀𝑦, 𝑦′ = 𝑦

[Berg]
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Handling of degenerate cases - realization

◼ Trick 

– store original (𝑥, 𝑦), not the sheared 𝑥’, 𝑦’

– we need to perform just 2 operations:

1. For two points p,q determine if transformed 

point 𝑞 is to the left, to the right or on vertical line through 

point 𝑝
– If 𝑥𝑝 = 𝑥𝑞 then compare 𝑦𝑝 and 𝑦𝑞 (on only for 𝑦𝑝 = 𝑦𝑞)

– => use the original coords (𝑥, 𝑦) and lexicographic order

2. For segment given by two points decide if 3rd point 𝑞 lies 

above, below, or on the segment 𝑝1 𝑝2
– Mapping preserves this relation

– => use the original coords (𝑥, 𝑦)
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Point location summary

◼ Slab method [Dobkin and Lipton, 1976]

– O(n2) memory O(log n) time 

◼ Monotone chain tree in planar subdivision [Lee  and Preparata,77]

– O(n2) memory O(log2 n) time

◼ Layered directed acyclic graph (Layered DAG) in planar 
subdivision [Chazelle , Guibas, 1986] [Edelsbrunner, Guibas, and Stolfi, 1986]

– O(n) memory O(log n) time => optimal algorithm 
of planar subdivision search
(optimal but complex alg.
=> see elsewhere)

◼ Trapezoidal map

– O(n) expected memory O(log n) expected time

– O(n log n) expected preprocessing           (simple alg.)
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