
+ additional notes by Petr Felkel, CTU Prague, 2020

Version from 8.10.2020

Expansion
• Sorted sequence of non-overlapping machine native numbers (float,

double) – each with its own exponent and significand (mantissa)
• Sorted by absolute values
• Signum of the highest FP number is the signum of the expansion
• Zero members of the expansion will be not added.

represents ݔ = +1018.7195
approximated ݔ	~ + 1020 = ସݔ

1020
- 1.3

1018.7
+ 0.02

1018.7200
- 0.0005

1018.7195

1020 -1.3 0.020 -0.0005

+

|ସݔ| |ଷݔ||ଶݔ||ଵݔ| >>>

Expansions are not unique

binary decimal1100	 +	(– 10.1) …12 + (−2.5)= 	1100.0	– 	10.1 …12	 − 2.5= 	1001	 + 	0.1 … 			9 + 0.5= 	1000	 + 	1	 + 	0.1 … 			8 + 1 + 0.5
All represent the value 1001.1 …9.5

Meaning of symbols

p-bit floating point operations with exact rounding (float, double):⊕ addition⊖ subtraction⊗ multiplication

Exact rounding

Operations with exact rounding to p-bits (32 / 64) store result:
exact results store exact, and
non-precise results store rounded

More than 4-bits arithmetic010 × 011	 = 	100								2 × 3 = 6			111 × 101	 = 	1000117 × 5 = 35

With exact rounding to 4-bits010⊗ 011	 = 	100								2 ⊗ 3 = 6			111⊗ 101	 = 	1.001 × 2ହ7⊗ 5 = 36 store rounded

store exact
if (possible)

else

Operations on expansions

IEEE 754 standard on floating point format and computing rules.
Operations on expansions require exact rounding of each op. to 32 / 64bit.

Fast-Two-Sum: (a>=b) -> (x, y), a+b=x+y
Two-Sum (a, b) -> (x, y)
Linear-Expansion-Sum (exp_a interleaved with exp_b) -> expansion

Split (a) -> (a_hi, a_lo), a=a_hi+a_lo
Two-Product (a,b) -> (x, y)

// Rounded sum = approximation

// What was truly added - Rounded

// round-off error

௩௜௥௧௨௔௟
௩௜௥௧௨௔௟ ௩௜௥௧௨௔௟+

Fast TwoSum with result rounded up

Correctܽ = 5081				ܾ = 						93.5
----------5174.5

Roundedܽ = 5081				ܾ = 					93.5
ݔ---------- = 5175

Really addedݔ = 		5175−ܽ = −5081			
----------ܾ௩௜௥௧௨௔௟ = 94

Correctionܾ = 			93.5−ܾ௩௜௥௧௨௔௟= −94
	ݕ---------- = 		−0.5

ܽ + ܾ = 	ݔ + ݕ	 		5081 + 93.5 = 	 5175 − 0.5

Fast TwoSum with result rounded down

Correctܽ = 5081				ܾ = 						93.4
----------5174.4

Roundedܽ = 5081				ܾ = 					93.4
ݔ---------- = 5174

Really addedݔ = 			5174−ܽ = −5081			
----------ܾ௩௜௥௧௨௔௟ = 93

Correctionܾ = 			93.4−ܾ௩௜௥௧௨௔௟= −94
	ݕ---------- = 						0.4

ܽ + ܾ = 	ݔ + ݕ	 		5081 + 93.4 = 	 5174 + 0.4

// Rounded sum = approximation

// What ܾ was truly added – Rounded
for ܽ	 > 	ܾ			

// round-off error of ܾ// What ܽ was truly added – Rounded
for ܾ	 > 	ܽ

// round-off error of ܽ

Sum of two expansions (4-bit arithmetic)

Input: 1111+0.1001 and 1100 + 0.1
Output: 11100 + 0 + 0.0001

Zeroes slow down the computation – removed afterwards

Merge both input expansions into a single sequence g
respecting the order of magnitudes

1111+ 1100 + 0.1001 + 0.1
Use LINEAR-EXPANSION-SUM (g)

Input expansion

Rounded
result

Correction

≥≥≥≥

Output expansion

Multiplication

Multiplies two p-bit values ܽ and ܾ
1. Split both p-bit values into two halve (with ~p/2 bits)
2. perform four exact multiplications on these fragments. ܽ௛௜ × ܽ௛௜, ܽ௛௜ × ܽ௟௢, ܽ௟௢ × ܽ௛௜, ܽ௟௢ × ܽ௟௢,	
The trick is to find a way to split a floating-point value in two.

SPLIT(a) operation

• Splits p bits into two non-overlapping halves
(௣ଶ bits	a୦୧	and ௣ଶ	 − 1		bits	a௟௢)

• Missing bit is hidden in the signum of a௟௢
• Example

7bit number splits to two 3 bit significands
1001001 splits to 1010000 (101 × 2ସ) and -111

73 = 80 - 7

Demonstration of SPLIT splitting a five-bit
number into two two-bit numbers

Demonstration of TWO-PRODUCT in six-bit
arithmetic

The resulting expansion is 110110 × 2଺ + 11001

Adaptive arithmetic

• Expensive – avoid when possible
• Some applications need results with absolute error below a threshold
• Set of procedures with different precision (& speed) + error bounds
• For each input – compute the error bounds and choose the procedure
But
• Sometimes hard to determine error before computation
• Especially when relative error needed – like sign of expression comp.

• Result can be much larger than error bound – exact arithmetic will suffice
• Result can be near zero – must be evaluated exactly

Shewchuk predicates

• Compute a sequence of increasingly accurate results
• Testing each for accuracy
• Not using separate procedures BUT
• Using intermediate results as steps to more accurate results

(work already done is not discarded, but refined)
• Idea: presented routines can be split to two parts

• Line 1 gives an approximate result - run each time
• Remaining lines compute the roundoff error – delayed until needed, if ever …

Principle of adaptive computation

Distance of two points
Store
and

Reorder terms according to their size

Compute them only if needed

ܾ௫ − ܽ௫ ଶ + ܾ௬ − ܽ௬ ଶ

ଵଶݔ + ଵݕଵݔ2 + 	ଵଶݕ + ଶଶݔ) + ଶݕଶݔ2 + (ଶଶݕ
ܾ௫ − ܽ௫ as ݔଵ + ଵܾ௬ݕ − ܽ௬ as ݔଶ + ଶݕ

ଵଶݔ + (ଶଶݔ ଵݕଵݔ2)	+ + ଶݕଶݔ2 + ଵଶݕ) + (ଶଶݕ

ܾ௫ − ܽ௫ ଶ + ܾ௬ − ܽ௬ ଶ

ଵଶݔ		 + ଵݕଵݔ2 + 	ଵଶݕ ଶଶݔ)+ + ଶݕଶݔ2 + (ଶଶݕ

⊕ rounded addition

Precise:

ܽଵܾ ଵ
ܽଵ ܽଵ + ܾଵ
first term:ܥଵ … roundedܣଵ … precise

Orientation predicate - definitionorientation ,݌ ,ݍ ݎ = sign	 det	 1 ௫݌ ௬1݌ ௫ݍ ௬1ݍ ௫ݎ ௬ݎ =	= sign ௫ݍ − ௫݌ ௬ݎ − ௬݌ − ௬ݍ − ௬݌ ௫ݎ − ௫݌ ,						where	point	݌ = ,௫݌ ௬݌ , …= third	coordinate	of	= ݑ × Ԧݒ ,	
Three points orientation ,݌ ,ݍ ݎ =

• lie on common line = 0
• form a left turn = +1 (positive)
• form a right turn = –1 (negative)

Felkel: Computational geometry (24)

r

q

p

ݑ

Ԧݒ

pivot	݌

Experiment with orientation predicate

• orientation(p,q,r) = sign((px-rx)(qy-ry)-(py-ry)(qx-rx))

Felkel: Computational geometry (25)

r = [24, 24]

q = [12, 12]

[0.5, 0.5]

p = [0.5 + dx , 0.5 + dy], dx , dy = k.2-53

– right turn

dx,
p

dy,

Ideal return
values

double

Value of the LSB

+ left turn

pivot	ݎ

