Robust Adaptive Floating-Point Geometric Predicates

Jonathan Richard Shewchuk

School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
jrs@cs.cmu.edu

+ additional notes by Petr Felkel, CTU Prague, 2020

Version from 8.10.2020



Expansion

e Sorted sequence of non-overlapping machine native numbers (float,
double) — each with its own exponent and significand (mantissa)

e Sorted by absolute values 13

 Signum of the highest FP number is the signum of the expansion %7,

e Zero members of the expansion will be not added. 1018.7200

- 0.0005

1018.7195

represents x = +1018.7195
approximated x ~ + 1020 = x,

| %4 ] > | %3] > | x| > x|




Expansions are not unique

binary decimal
1100 + (-10.1) .12 4+ (=2.5)
= 1100.0 - 10.1 .12 — 2.5
= 1001 + 0.1 .. 9405
= 1000 + 1 + 0.1 .. 83+14+0.5

All represent the value 1001.1 ...9.5



Meaning of symbols

p-bit floating point operations with exact rounding (float, double):

@ addition
6 subtraction
& multiplication



Exact rounding

Operations with exact rounding to p-bits (32 / 64) store result:

exact results store exact, and
non-precise results store rounded

More than 4-bits arithmetic With exact rounding to 4-bits
010 x 011 = 100 010 ® 011 = 100 if (possible)
2X3=6 2Q3=6 store exact
else
111 x 101 = 100011 111 ® 101 = 1.001 x 2° store rounded

7 x5 =35 7Q®5 =36



Operations on expansions

IEEE 754 standard on floating point format and computing rules.
Operations on expansions require exact rounding of each op. to 32 / 64bit.

Fast-Two-Sum: (a>=b) -> (x, y), a+b=x+y
Two-Sum (a, b) -> (X, y)
Linear-Expansion-Sum (exp_a interleaved with exp_b) -> expansion

Split (a) -> (a_hi, a_1lo), a=a_hi+a_lo
Two-Product (a,b) -> (x, y)



numbers such that||a| > Then the following algorithm
will produce a nonoverlapping expansion x + vy such that
a + b = x + y, where(x)is an approximation to a + b and[y|
represents the roundoff error in the calculation of . |

FAST-TWO-SuM(a, b)

Tr<<= a9 b // Rounded sum = approximation
bVlI’tual <= I &S @ //Whatwastruly added - Rounded

]
2
3 y — b @ bvlrtual // round-off error
4 return (z,y)

Theorem 1 (Dekker [4]) Let a and b be p-bit floating-point
b].




FAST-TWO-SuM(a, b) lal = 1b|

1 r<adb a
: byirtual < T © @ b .
3 Y <= b O byjrtual x < a @ b
4 return (z,y) —q
bvirtual L ]
a+b=x+y b [ <
=a@® b+ bO byiriyal —byirtual I

e+ = y =




Fast TwoSum with result rounded up

Correct Rounded Really added Correction
a = 5081 a = 5081 x = 5175 b= 935
= 935 b= 935 —a = —5081 —Dyirtual= —94
5174.5 x = 5175 byirtuar = 94 y = —0.5

(a+b)=(x + y)

5081 + 93.5 = (5175 — 0.5)



Fast TwoSum with result rounded down

Correct Rounded Really added

a = 5081 a = 5081 x = 5174

= 934 = 934 —a = —5081
5174.4 x =5174

byirtuar = 93

(a+b)=(x + y)

5081 + 93.4 = (5174 + 0.4)

Correction
b= 934
_bvirtual: —94
y = 04



Theorem 2 (Knuth [10]) Let a and b be p-bit floating-point
numbers, where p > 3. Then the following algorithm will
produce a nonoverlapping expansion x + vy such that a + b =

r+y.

N
Two-SuM(a, b)
— r&=adb // Rounded sum = approximation
. bV irtual < S a // What b was truly added — Rounded

fora > b

G’VIITUB.I <: L @ bVlI‘tual // What a was truly added — Rounded

. . forb > a
bI‘OUIldO {‘; b @ bVlrtual // round-off error of b
roundo

A .
— a e a’VlI’tual // round-off error of a

Y <= aroundoff © broundoff
return (z,y)

LN U AW N =
!

|



Sum of two expansions (4-bit arithmetic)

Input: 1111+0.1001 and 1100+ 0.1
Output: 11100 + 0 + 0.0001
Zeroes slow down the computation — removed afterwards

Merge both input expansions into a single sequence g
respecting the order of magnitudes

1111+ 1100 +0.1001 + 0.1
Use LINEAR-EXPANSION-SUM (g)



> g2 = g1

ounded l
result
5 FAST
TWO |

SUM

Correction

Input expansion

Y

hs  ha hi L] Output expansion

Figure 1. Operation of LINEAR-EXPANSION-SUM. The expansions g
and h are illustrated with their most significant components on the left.
Q; + g; maintains an approximate running total. The FAST-TwWO-Sum
operations in the bottom row exist to clip a high-order bit off each ¢;

term, if necessary, before outputting it.



Multiplication

Multiplies two p-bit values a and b
1. Split both p-bit values into two halve (with ~p/2 bits)

2. perform four exact multiplications on these fragments.
Api X Apj, Api X A1, A1 X Apj, Ao X Ao,

The trick is to find a way to split a floating-point value in two.



SPLIT(a) operation

* Splits p bits into two non-overlapping halves
(E‘ bits ap; and [ﬂ — 1 bitsa;,)
e Missing bit is hidden in the signum of a;,
* Example
7bit number splits to two 3 bit significands
1001001 splits to 1010000 (101 x 2%) and -111
73=80-7



Theorem 4 (Dekker [4]) Let a be a p-bit floating-point
number, where p > 3. The following algorithm will pro-
duce a | % | -bit value ay,; and a nonoverlapping (| 5| — 1)-bit

value ay, such that |ay;| > |a),| and a = ap; + ap, _
SPLIT(a)]
I ce PP 4+ ®a
2 abig =coa
3 Ah < C O apy; o /
4 Ao < @ O Ap \*
S return (ahij alo)



Theorem S (Veltkamp) Let a and b be p-bit floating-point
numbers, where p > 4. The following algorithm will produce
a nonoverlapping expansion x + y such that ab = = + v.

|
Two-PrRODUCT(a, b)

1 r<=ax®b

(anj, a1g) = SPLIT(a)
(bhj»> b19) = SPLIT(b)

erry <= T O (ap @ byi)
erry < erry © (a lc: 9 bhl)
erry < erry © (a

y <= (a1p ®by) © errs
return (z, y)

O~ Onn & W



Demonstration of SPLIT splitting a five-bit
number into two two-bit numbers

a = I1 1 1 0 1
20 = 1 1T 1 0 1 x 23
¢c = (224+41)®a =1 0 0 0 0 x 2%

a = I1 1 1 0 1
Uhig = cSa = 1 1 1 O O x 23
ahi = C S ap; o = I 0 0 O O x 21

alg = a4 S ap; = — 1 1



Demonstration of TWO-PRODUCT in six-bit

arithmetic
a = 1 1 1 0 1 1
h = 1 1 1 0 1 1
€ro= a®b = 1 1 0 1 1 O
ahi @ bpi | = 1 1 0 0 0 1
erry = 1O (AR @ by) = 1 01 0 0 O
a1 @ by = 1 01 01 O
errs =  err; e (”’10 Rbp) = 1 0 0 1 1 O
ahi @ b1o = 1 01 01 O
erry = err O (ap; @ by) = — 1 0 0 0 O
1o @ blo = I 0 0 1
—y = err3o(a1p®@by) = — 1 1 0 0 1

The resulting expansion is 110110 x 2° + 11001

x 20
x 20
x23
x 22
x 22
x 22



Adaptive arithmetic

e Expensive — avoid when possible

e Some applications need results with absolute error below a threshold
e Set of procedures with different precision (& speed) + error bounds

e For each input — compute the error bounds and choose the procedure
But

e Sometimes hard to determine error before computation

e Especially when relative error needed — like sign of expression comp.
e Result can be much larger than error bound — exact arithmetic will suffice
e Result can be near zero — must be evaluated exactly



Shewchuk predicates

 Compute a sequence of increasingly accurate results
e Testing each for accuracy
e Not using separate procedures BUT

e Using intermediate results as steps to more accurate results
(work already done is not discarded, but refined)

 |dea: presented routines can be split to two parts
e Line 1 gives an approximate result - run each time
 Remaining lines compute the roundoff error — delayed until needed, if ever ...



Principle of adaptive computation

2
Distance of two points (b, — ax)2 + (by — ay)
Store b, —a, as x; +y;

and b, —a, as x, +y,
(xf 4+ 2x1y1 + ¥ ) + (x5 + 2x,5, + ¥3 )
Reorder terms according to their size

(xf +x3) + (2x1y1 + 2%,2) + 7 +¥5)

Compute them only if needed



Precise;

4 - Component
waaay Expansion

@ Two-Product

Expansion-Sum

rounded addition

a, aq + bl

Ll

e a;b,

first term:

Cy ... rounded
A4 ... precise

N RS
I

Y- ¥

Y

¥i

' X7y, Xty
(B i[me} y2) +

2 2 1A 1l .
(| x5 |+ 2x2y, H ys ) CX X Xy X53(2% v X, vy




Orientation predicate - definition

orientation(p, q,r) = sign | det

= sign ((qx —p)(ry = py) = (ay —py) (- px))’

1 py
1 gy
1

where pointp = (Px» Py),
= third coordinate of = (u X v),

Three points
e lie on common line
 form a left turn

= +1 (positive)

e form a right turn = -1 (negative)

Dy |
dy

Ty

orientation(p, q,r) =

pivotp



pivotr

Experiment with orientation predicate

r=[24, 24]

* orientation(p,q,r) = sign((p,-r,)(a,r,)-(p,-r, ), ry)

d

yl

Ideal return
values

{ p=[0.5+d,,05+d], d,,d,=k2%

Value of the LSB

Felkel: Computational geometry (25)



