
Security of web applications

Tomáš Pevný

December 1, 2022

OWASP top ten vulnerabilities

Preservation of trust state

Untrusted
data

Trusted
data

f1.php

Button 1

Button 2

Trusted region

Untrusted region

f2.php

f2.php

the trust state lost: led
to same-origin policy

the trust state lost: led
to same-session policy

Prototypical XSS

<script> var x = ’INPUT_FROM_USER’; </script>

▶ Single quote breaks out of JS string, context into JS context
▶ </script> breaks out of JS context into HTML context

Mash-up

Same origin policy

originating document accessed document non-IE IE

http://example.com/a/ http://example.com/b/ OK Ok
http://example.com/ http://www.example.com/ — —
http://example.com/ https://example.com/ — —
http://example.com:81/ http://example.com/ — OK

Cookies

Cross-origin-request-forgery

Imagine a following sequence
1. You log to your bank https://bank.com and perform

transaction
2. You close the tab and continue other work
3. You visit some totally unrelated site

https://notsoobviousattacker.com

4. There you click on link

win free ipad

Cookies — SameSite

▶ SameSite attribute allow to specify, if cookie should be served
to third parties

▶ options:
▶ None
▶ Lax
▶ Strict

https://web.dev/samesite-cookies-explained/

https://web.dev/samesite-cookies-explained/

Attack on cookie integrity: Related domain attacker

1. User create secure cookie on food.
Sent only to food.shop.com over HTTPS.

2. User visits evil.shop.com.
Set cookie for *.shop.com.

3. food.shop.com receives cookie set by
evil.shop.com

.
www.shop.com

api.shop.com

food.shop.com

evil.shop.com

Attack on cookie integrity: Related domain attacker

1. User create secure cookie on food.
Sent only to food.shop.com over HTTPS.

2. User visits evil.shop.com.
Set cookie for *.shop.com.

3. food.shop.com receives cookie set by
evil.shop.com

.
www.shop.com

api.shop.com

food.shop.com

evil.shop.com

Attack on cookie integrity: Related domain attacker

1. User create secure cookie on food.
Sent only to food.shop.com over HTTPS.

2. User visits evil.shop.com.
Set cookie for *.shop.com.

3. food.shop.com receives cookie set by
evil.shop.com.

www.shop.com

api.shop.com

food.shop.com

evil.shop.com

Content security policy

White-list sources of trusted content.

Example: Google we trust

Content-Security-Policy: script-src ’self’
https://apis.google.com

Content security policy

▶ base-uri
▶ child-src
▶ connect-src
▶ font-src
▶ form-action
▶ frame-ancestors
▶ img-src
▶ media-src
▶ object-src
▶ plugin-types
▶ report-uri
▶ style-src
▶ upgrade-insecure-requests

Example: white-listing more resources

Content-Security-Policy: default-src https://cdn.example.net;
child-src ’none’; object-src ’none’

Keywords

▶ none
▶ self
▶ unsafe-inline
▶ unsafe-eval

Example: insecure embedding of javascript

<script>
function doAmazingThings() {

alert(’Hello!’);
}

</script>
<button onclick=’sayHello();’>Say Hello.</button>

Example: secure embedding javascript

<!-- Hello.html -->
<script src=’Hello.js’></script>
<button id=’Hello’>Am I Hello?</button>

// Hello.js
function sayHello() {

alert(’Hello!’);
}
document.addEventListener(’DOMContentReady’, function () {

document.getElementById(’Hello’)
.addEventListener(’click’, sayHello);

});

"Safely" enabling inline scripts

Content-Security-Policy: script-src ’nonce-EDNnf03nceIOfn39f’

<script nonce=EDNnf03nceIOfn39f>
// Some inline code I can’t remove yet, but need to asap.

</script>

’strict-dynamic’ requires nonce for inline scripts but not for scripts
included from external sources.

DOM-based cross-site scripting

el.innerHTML = ’’;

▶ Script manipulation: <script src> and setting text content
of <script> elements.

▶ Generating HTML from a string: innerHTML,
outerHTML,insertAdjacentHTML, <iframe> srcdoc,
document.write, document.writeln, and
DOMParser.parseFromString

▶ Executing plugin content: <embed src>, <object data>
and <object codebase>

▶ Runtime JavaScript code compilation: eval, setTimeout,
setInterval, new Function()

Trusted Types

Content-Security-Policy: require-trusted-types-for ’script’;

const escapeHTMLPolicy = trustedTypes.createPolicy(’myEscapePolicy’, {
createHTML: string => string.replace(/\</g, ’<’)

});

const escaped = escapeHTMLPolicy.createHTML(’’);
el.innerHTML = escaped; // ’’

Dealing with untrusted content?

▶ Static or dynamic validation of all 3rd party data
(user-supplied data and extensions).

▶ Mark-down language
▶ Use <sandbox> tag in HTML5.
▶ Use content security policy.

Example: embedding twitter button

<iframe
src="https://platform.twitter.com/widgets/tweet_button.html"
style="border: 0; width:130px; height:20px;">

</iframe>

Example: embedding twitter button

<iframe
sandbox="allow-same-origin allow-scripts

allow-popups allow-forms"
src="https://platform.twitter.com/widgets/tweet_button.html"
style="border: 0; width:130px; height:20px;">

</iframe>

Example: Turning page into static content

<iframe sandbox src="example.com">

Sandbox options

▶ allow-forms
▶ allow-popups
▶ allow-pointer-lock
▶ allow-same-origin
▶ allow-scripts
▶ allow-top
▶ allow-scripts
▶ allow-popups
▶ allow-forms

Example: separation of privileges

Plan

Preserving code integrity

Example of synchronous application

Warehouse application:
1. choose goods to buy
2. go to checkout
3. pay
4. send notification to release the goods.

Synchronous application with asynchronous mechanisms

Synchronous vs. Asynchronous models

usually single
process

usually single
process

serverclient

single TCP
connection

Stateful client/server framework

Synchronous vs. Asynchronous models

client server

multiple TCP
connections

Web client-server model

Attack: session hijacking

If an attacker discover session ID he has free access to the session.
▶ Some applications do not protect session ID sufficiently.
▶ Some applications exploit session ID for functionality, such as

sharing.

Attack: session fixation on PHP

Provide the parameter when session_start() is called
▶ In GET request as

http://targeted_server.com/logon.php?SID=12345.
▶ In cookie when

http://targeted_server.com/logon.php?SID=12345

	Preserving code integrity

