
Local privilege escalation

November 18, 2021



Value of hacked PC



Secure operating system

A secure operating system provides security mechanisms that
ensure that the system’s security goals are enforced despite the

threats faced by the system.



Minimal functional requirements on OS

I Scheduling
I Process isolation (memory management)
I Inter-process communication



Requirements on secure OS

I Complete mediation
I Tamperproof
I Verifiable



Ensuring complete mediation

p
ro
ce
ss

1

p
ro
ce
ss

2

p
ro
ce
ss

n

s
y
s
c
a
ll

s
y
s
c
a
ll

s
y
s
c
a
ll

OS

device

driver 1

device

driver 2

device

driver n

device 1 device 2 device n

reference monitor



Scheme of the reference monitor

Protection
state

Labeling
state

Transition
state

Policy store

Authorization module

Reference monitor



Example of TOCTTOU

Victim

if (access("file", W_OK) != 0) {
exit(1);

}

fd = open("file", O_WRONLY);
// Actually writing over
// /etc/passwd
write(fd, buffer, sizeof(buffer));

Attacker

//
//
// After the access check
symlink("/etc/passwd", "file");
// Before the open, "file"
// points to the password
// database
//



Plan

Kernel’s protection measures
Protection rings
Isolation of processes

Verification

System assurance



Isolating kernel — protection rings

ring 0

ring 1

ring 2

ring 3

I Requires privileged instructions.
I Each ring can access data in further

out ring.
I Each ring can execute only its own

instructions.
I Crossing rings is allowed through gates.



Isolating kernel — protection rings

kernel

device drivers

device drivers

user processes

I Ideally the ring structure reflects the
importance of the code.



Question?

Which access model ring structure resembles?



When crossing ring is needed?

I request resources from the OS;
I establishes communication with other processes;
I request other services from the OS.



How gates and syscalls are implemented?

editor calls read()

kernel trap handler

read system call

trap to kernel mode and save
application state and registers

lookup read() in syscall table and
invoke internal read()

restore state and
CPU registers

return to trap
handler



Isolation of processes

The process should feel like running alone.
Therefore it needs to have separate
I registers,
I all kernel structures (file descriptors, network connections etc.),
I memory.



Virtual memory management

I The process sees a flat memory of size 248 bits.
I Memory is divided into pages / frames and allocated page by

page.
I To access the memory, virtual address is transformed to the

physical address.
I The process only knows the virtual address, the translation to

physical address can be handled by
I kernel, or
I hardware memory management unit (special instructions

reserved for the ring 0)



Virtual memory management



Page table entry (32 bits)



Added benefits of virtual addresses memory management

I swapping
I shared code between processes
I shared memory between processes (modulated by the kernel)
I Multi-level virtual address
I no execution bits



Plan

Kernel’s protection measures
Protection rings
Isolation of processes

Verification

System assurance



What are parts of trusted computer base on real OS?

I Kernel and all its modules (device drivers)
I Window management systems
I Systems verifying authenticity (SSH, login).
I all root processes ps -ax -u root



Monolithic design

security monitor

memory management

auditing

device drivers

IPC

schedulling

a
p
p
li
ca
ti
o
n
s

o
s
se
rv
ic
es

S
S
H

d
a
em

o
n

H
T
T
P

d
a
em

o
n

a
p
p
li
ca
ti
o
n
s



Modular design

security monitor

memory management

auditing

device drivers

IPC

scheduling

TCP/IP stack USB stackmouse driver

a
p
p
li
ca
ti
o
n
s

o
s
se
rv
ic
es

S
S
H

d
a
em

o
n

H
T
T
P

d
a
em

o
n



Micro kernel (seL4)

memory management security monitor IPC schedulling

a
u
d
it
in
g

d
ev
ic
e
d
ri
v
er
s

a
p
p
li
ca
ti
o
n
s

o
s
se
rv
ic
es

S
S
H

d
a
em

o
n

H
T
T
P

d
a
em

o
n

a
p
p
li
ca
ti
o
n
s

T
C
P

st
a
ck

U
S
B

st
a
ck



Plan

Kernel’s protection measures
Protection rings
Isolation of processes

Verification

System assurance



"Orange Book" — Trusted Computer System Evaluation
Criteria

Each category imposes requirements of four categories
1. the security policy model, including the administration of

policies described in the model and the labelling of system
resources;

2. the level of accountability for system actions, including
authentication of individual subjects and audit of system
actions;

3. the degree of operational assurance that the system behaves
as expected, including the implementation and maintenance of
the system;

4. the documentation provided to support the design,
implementation, assurance, and maintenance of the system.



Common Criteria Evaluation Assurance Levels

Level and TCSEC Map Requirements
EAL1 functionally tested
EAL2 (C1: low) structurally tested
EAL3 (C2/B1: moderate) methodically tested and checked
EAL4 (C2/B1: medium) methodically designed, tested and reviewed
EAL5 (B2: high) semiformally designed and tested
EAL6 (B3: high) semiformally verified design and tested
EAL7 (A1: high) formally verified design and tested



C1 — discretionary security protection

I discretionary access control of named users and objects;
I all users have to be authenticated;
I hardware supports control mediation;
I requires basic testing for obvious flaws;
I only basic documentation is needed.



C2 — controlled access protection

I the granularity of access rights are on the level of single user;
I authentication is based on secret and protected from other

users;
I auditing of specific set of events into log;
I reusing objects means that previous content is not accessible;
I testing for obvious flaws and design;
I documentation for user, facilities, design, and testing.
I Windows NT 4.0, most UNIXes



B1 — labeled security protection

I DAC as C1&C2 and mandatory access control to each subject
is associated a label with multi-layer policy;

I labels are integrity protected and are persistently attached to
the object;

I authentication identifies user and its security level;
I assurance requires security mechanisms to work as claimed in

documentation;
I the documentation supports testing of the system through

detailed description of the security model, protection
mechanisms, and how the model is satisfied.

I Example: SE Linux, Trusted Solaris V1.1 Compartmented
Mode Workstation



B2 — structured protection

I requiring enforcement on access to all subjects and objects
(i.e., not just named ones);

I covert channel protections;
I protection-critical part of the TCB must be identified, and its

interface must be well-defined
I TCB must be shown to be "relatively resistant to penetration."
I Example: Trusted Xenix 3.0 and 4.0



B3 — security domains

I TCB satisfy the reference monitor concept;
I TCB design and implementation are directed toward minimal

size and minimal complexity
I system is expected to be "highly resistant to penetration."
I audit subsystem must be able to record all security-sensitive

events.
I Example: BAE Systems XTS 400



A1 — verified design

I A formal model of the security policy must be documented
and include a mathematical proof that the model is consistent
with the policy;

I An formal top-level specification (FTLS) must specify the
functions that the TCB performs and the hardware/firmware
support for separate execution domains;

I The FTLS of the TCB must be shown to be consistent with
the formal model of the security policy;

I The TCB implementation must be consistent with the FTLS;
I Formal analysis techniques must be used to identify and

analyse covert channels. The continued existence of covert
channels in the system must be justified.

I Examples: Honeywell’s SCOMP, Aesec’s GEMSOS, and
Boeing’s SNS Server, canceled DEC VAX Security kernel



Vulnerabilities — Exploits — Remedies

Vulnerabilities Exploits Remedies
Buffer overflow Injecting code to stack Canaries
Heap overflow Return 2 libc DEP
Use after free ROP ASLR
Structured Exception SEHOP
Handler overwrite



Buffer overflow

void doRead(){
char buffer[28];
gets(buffer);

}

int main(int argc){
doRead();

}



Buffer overflow

void doRead(){
char buffer[28];
gets(buffer);

}

int main(int argc){
doRead();

}



Canaries



Heap overflow

#include <string.h>
#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

char *buf1 = malloc(128);
char *buf2 = malloc(128);

read(fileno(stdin), buf1, 200);

free(buf2);
free(buf1);

}



Heap overflow — Removing the chunk

Larry -> BLINK -> FLINK = Larry -> FLINK
Larry -> FLINK -> BLINK = Larry -> BLINK



Data execution prevention



Address space randomization



SEHO protection


	Kernel's protection measures
	Protection rings
	Isolation of processes

	Verification
	System assurance

