
Security of web browsers I

November 7, 2019



Motivation

How frequently do you run new and untrusted code?



Modern browsers are complex

DOM Javascript

Extension 1

Extension 2

Extension n

···

OS services

p
lu
g
in

1

p
lu
g
in

2

p
lu
g
in

n

np
ap
i

· · ·

b
ro
w
se
r
ap

i

Browser

document

Doom in the browser
Technologies in cnn

https://js-dos.com/games/doom.exe.html
https://builtwith.com/cnn.com


Browser vulnerability

Since the modern browser is very complex relying on many
3rd party libraries, there is a high chance there will be a bug.



Example of buffer overflow

CVE-2016-1681 Default pdf reader in Google Chrome web
browser had an exploitable heap buffer overflow vulnerability. By
simply viewing a PDF document that includes an embedded
jpeg2000 image, it is possible to execute arbitrary code.

PDFium

http://blog.talosintel.com/2016/06/pdfium.html


Example of use-after-free

CVE-2016-2821: Use-after-free vulnerability in the
mozilla::dom::Element class in Mozilla Firefox before 47.0 and
Firefox ESR 45.x before 45.2, when contenteditable mode is
enabled, allows remote attackers to execute arbitrary code or cause
a denial of service (heap memory corruption) by triggering deletion
of DOM elements that were created in the editor.



Example of integrity attack

CVE-2016-2819: Mozilla windows updater does not lock files for
writing and can be overwritten by other process with their own
content while updater is running. This vulnerability could be used
for privilege escalation if these overwritten files were later invoked
by other Windows components that had higher privileges.



Plan

Sandboxing browsers



Security architecture of chromium



Division of tasks

Rendering Engine Browser Kernel
HTML parsing Cookie database
CSS parsing History database

Image decoding Password database
JavaScript interpreter Window management
Regular expressions Location bar

Layout Safe Browsing blacklist
Document Object Model Network stack

Rendering SSL/TLS
SVG Disk cache

XML parsing Download manager
XSLT Clipboard



Sandboxing in chrome

Chrome runs each panel as a separate process with restricted api

Linux
I empty root
I process namespace
I network namespace
I syscall whitelist
I seccomp-bfl

Windows
I restricted access tokens
I job object limitations
I window station and desktop Isolation
I mandatory integrity control
I exports API for sandboxed applications



Effect of sandboxing (in Acrobat) Win XP



Effect of sandboxing (in Acrobat) Win 7



Extensions in Firefox 2003-2015

Web page
internet zone

Browser

Operating system

DOM &
scripts

Javascript XUL

X
B
L

XPConnect

XPCOM

Extension
chrome://zone
or browser zone

chrome://browser/content/browser.xul



Example of manifest.json

{
"name": "Google Mail Checker",
"description": "Displays the number of unread

messages...",
"version": "1.2",
"background_page": "background.html",
"permissions": [

"tabs",
"http://*.google.com/",
"https://*.google.com/"

],
"browser_action": {

"default_title": ""
},
"icons": {

"128": "icon_128.png"
} }



Chrome extension model



Isolating worlds



Security evaluation of chrome’s extensions

From study1

I Isolated worlds is highly effective.
I Separation would protect 62% percent in the case the above

fails.
I Permissions significantly reduce severity of half of the core

extensions vulnerabilities.

1An Evaluation of the Google Chrome Extension Security Architecture,
Nicholas Carlini, Adrienne Porter Felt, and David Wagner, 2012

http://nicholas.carlini.com/papers/2012_usenix_chromeextensions.pdf
http://nicholas.carlini.com/papers/2012_usenix_chromeextensions.pdf


Threats to extensions

I Data as HTML
I Click injection
I Web Site Metadata Vulnerabilities
I Direct network attack



Google’s native client for x86-32

I modified compiler produces code produces code that can be
efficiently verified

I address protection relies on x86’s segmentation (no overhead
on checking)

I write to code segment is prohibited — prevents self-modifying
code

I privileged instructions & syscalls are prohibited
I all jumps are 32 bytes aligned
I returns and calls are prohibited
I trampoline — mechanism to jump from untrusted to trusted

code
I springboard — mechanism to jump from trusted to untrusted

code



Cryptography in browser

Is cryptography in Javascript (in Browser) possible?



Cryptography in browser

Cryptography in javascript is currently nonsense, since XSS
vulnerabilities gives attacker access to all data and all code.

Javascript cryptography considered harmful, Matasano security, 2011

https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/august/javascript-cryptography-considered-harmful/

	Sandboxing browsers

